Ikushiro Hiroko, Islam Mohammad Mainul, Tojo Hiromasa, Hayashi Hideyuki
Department of Biochemistry, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan.
J Bacteriol. 2007 Aug;189(15):5749-61. doi: 10.1128/JB.00194-07. Epub 2007 Jun 8.
Serine palmitoyltransferase (SPT) is a key enzyme in sphingolipid biosynthesis and catalyzes the decarboxylative condensation of l-serine and palmitoyl coenzyme A (CoA) to form 3-ketodihydrosphingosine (KDS). Eukaryotic SPTs comprise tightly membrane-associated heterodimers belonging to the pyridoxal 5'-phosphate (PLP)-dependent alpha-oxamine synthase family. Sphingomonas paucimobilis, a sphingolipid-containing bacterium, contains an abundant water-soluble homodimeric SPT of the same family (H. Ikushiro et al., J. Biol. Chem. 276:18249-18256, 2001). This enzyme is suitable for the detailed mechanistic studies of SPT, although single crystals appropriate for high-resolution crystallography have not yet been obtained. We have now isolated three novel SPT genes from Sphingobacterium multivorum, Sphingobacterium spiritivorum, and Bdellovibrio stolpii, respectively. Each gene product exhibits an approximately 30% sequence identity to both eukaryotic subunits, and the putative catalytic amino acid residues are conserved. All bacterial SPTs were successfully overproduced in Escherichia coli and purified as water-soluble active homodimers. The spectroscopic properties of the purified SPTs are characteristic of PLP-dependent enzymes. The KDS formation by the bacterial SPTs was confirmed by high-performance liquid chromatography/mass spectrometry. The Sphingobacterium SPTs obeyed normal steady-state ordered Bi-Bi kinetics, while the Bdellovibrio SPT underwent a remarkable substrate inhibition at palmitoyl CoA concentrations higher than 100 microM, as does the eukaryotic enzyme. Immunoelectron microscopy showed that unlike the cytosolic Sphingomonas SPT, S. multivorum and Bdellovibrio SPTs were bound to the inner membrane of cells as peripheral membrane proteins, indicating that these enzymes can be a prokaryotic model mimicking the membrane-associated eukaryotic SPT.
丝氨酸棕榈酰转移酶(SPT)是鞘脂生物合成中的关键酶,催化L-丝氨酸和棕榈酰辅酶A(CoA)的脱羧缩合反应,形成3-酮二氢鞘氨醇(KDS)。真核生物的SPT由紧密结合于膜的异二聚体组成,属于依赖于磷酸吡哆醛(PLP)的α-草氨酸合酶家族。少动鞘氨醇单胞菌是一种含鞘脂的细菌,含有该家族丰富的水溶性同二聚体SPT(H. Ikushiro等人,《生物化学杂志》276:18249 - 18256,2001)。尽管尚未获得适合高分辨率晶体学研究的单晶,但这种酶适合用于SPT的详细机制研究。我们现在分别从多食鞘氨醇杆菌、嗜灵鞘氨醇杆菌和斯托普氏蛭弧菌中分离出了三个新的SPT基因。每个基因产物与真核亚基的序列同一性均约为30%,且推测的催化氨基酸残基是保守的。所有细菌SPT均在大肠杆菌中成功过量表达,并作为水溶性活性同二聚体进行了纯化。纯化后的SPT的光谱性质是依赖PLP的酶的特征。通过高效液相色谱/质谱法证实了细菌SPT可形成KDS。鞘氨醇杆菌的SPT遵循正常的稳态有序双底物双产物动力学,而蛭弧菌SPT在棕榈酰CoA浓度高于100 μM时会像真核酶一样受到显著的底物抑制。免疫电子显微镜显示,与胞质中的鞘氨醇单胞菌SPT不同(此处原文有误,根据前文推测应为Sphingomonas paucimobilis),多食鞘氨醇杆菌和蛭弧菌的SPT作为外周膜蛋白与细胞内膜结合,这表明这些酶可以作为模仿与膜相关的真核SPT的原核模型。