Suppr超能文献

全基因组关联数据的等位基因关联研究可以揭示标记位置分配中的错误。

Allelic association studies of genome wide association data can reveal errors in marker position assignments.

作者信息

Curtis David

机构信息

Academic Centre for Psychiatry, Queen Mary's School of Medicine and Dentistry, London, UK.

出版信息

BMC Genet. 2007 Jun 8;8:30. doi: 10.1186/1471-2156-8-30.

Abstract

BACKGROUND

Genome wide association (GWA) studies provide the opportunity to develop new kinds of analysis. Analysing pairs of markers from separate regions might lead to the detection of allelic association which might indicate an interaction between nearby genes.

METHODS

396,591 markers typed in 541 subjects were studied. 7.8*1010 pairs of markers were screened and those showing initial evidence for allelic association were subjected to more thorough investigation along with 10 flanking markers on either side.

RESULTS

No evidence was detected for interaction. However 6 markers appeared to have an incorrect map position according to NCBI Build 35. One of these was corrected in Build 36 and 2 were dropped. The remaining 3 were left with map positions inconsistent with their allelic association relationships.

DISCUSSION

Although no interaction effects were detected the method was successful in identifying markers with probably incorrect map positions.

CONCLUSION

The study of allelic association can supplement other methods for assigning markers to particular map positions. Analyses of this type may usefully be applied to data from future GWA studies.

摘要

背景

全基因组关联(GWA)研究为开展新型分析提供了契机。分析来自不同区域的标记对可能会发现等位基因关联,这可能表明附近基因之间存在相互作用。

方法

对541名受试者中分型的396,591个标记进行了研究。筛选了7.8×10¹⁰对标记,对那些显示出等位基因关联初步证据的标记以及两侧的10个侧翼标记进行了更深入的研究。

结果

未检测到相互作用的证据。然而,根据NCBI Build 35,有6个标记似乎具有错误的图谱位置。其中一个在Build 36中得到了修正,2个被舍弃。其余3个标记的图谱位置与其等位基因关联关系不一致。

讨论

尽管未检测到相互作用效应,但该方法成功地识别出了图谱位置可能错误的标记。

结论

等位基因关联研究可以补充其他将标记分配到特定图谱位置的方法。此类分析可能会有效地应用于未来GWA研究的数据。

相似文献

2
Exhaustive allelic transmission disequilibrium tests as a new approach to genome-wide association studies.
Nat Genet. 2004 Nov;36(11):1181-8. doi: 10.1038/ng1457. Epub 2004 Oct 24.
3
Efficacy assessment of SNP sets for genome-wide disease association studies.
Nucleic Acids Res. 2007;35(17):e113. doi: 10.1093/nar/gkm621. Epub 2007 Aug 28.
4
A general method for linkage disequilibrium correction for multipoint linkage and association.
Genet Epidemiol. 2008 Nov;32(7):647-57. doi: 10.1002/gepi.20339.
5
Haplotype association mapping in mice.
Methods Mol Biol. 2009;573:213-22. doi: 10.1007/978-1-60761-247-6_12.
8
Effect of linkage disequilibrium between markers in linkage and association analyses.
Genet Epidemiol. 2007;31 Suppl 1:S139-48. doi: 10.1002/gepi.20291.
10
Perils in the use of linkage disequilibrium for fine gene mapping: simple insights from population genetics.
Cancer Epidemiol Biomarkers Prev. 2008 Dec;17(12):3292-7. doi: 10.1158/1055-9965.EPI-08-0717.

引用本文的文献

1
Associating complex traits with genetic variants: polygenic risk scores, pleiotropy and endophenotypes.
Genetica. 2022 Aug;150(3-4):183-197. doi: 10.1007/s10709-021-00138-2. Epub 2021 Oct 22.
2
Comparison of strategies to detect epistasis from eQTL data.
PLoS One. 2011;6(12):e28415. doi: 10.1371/journal.pone.0028415. Epub 2011 Dec 19.
3
A novel statistic for genome-wide interaction analysis.
PLoS Genet. 2010 Sep 23;6(9):e1001131. doi: 10.1371/journal.pgen.1001131.
4
The impact of phenocopy on the genetic analysis of complex traits.
PLoS One. 2010 Jul 29;5(7):e11876. doi: 10.1371/journal.pone.0011876.
5
An approach based on a genome-wide association study reveals candidate loci for narcolepsy.
Hum Genet. 2010 Oct;128(4):433-41. doi: 10.1007/s00439-010-0862-z. Epub 2010 Jul 31.
6
FastEpistasis: a high performance computing solution for quantitative trait epistasis.
Bioinformatics. 2010 Jun 1;26(11):1468-9. doi: 10.1093/bioinformatics/btq147. Epub 2010 Apr 7.
7
Detecting gene-gene interactions that underlie human diseases.
Nat Rev Genet. 2009 Jun;10(6):392-404. doi: 10.1038/nrg2579.
8
Using biological networks to search for interacting loci in genome-wide association studies.
Eur J Hum Genet. 2009 Oct;17(10):1231-40. doi: 10.1038/ejhg.2009.15. Epub 2009 Mar 11.

本文引用的文献

2
Program report: GENECOUNTING support programs.
Ann Hum Genet. 2006 Mar;70(Pt 2):277-9. doi: 10.1111/j.1529-8817.2005.00225.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验