Qiu Yu, Loh Horace H, Law Ping-Yee
Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
J Biol Chem. 2007 Aug 3;282(31):22315-23. doi: 10.1074/jbc.M611258200. Epub 2007 Jun 12.
In the current study, we investigated the role of receptor phosphorylation and beta-arrestins in delta-opioid receptor (DOR) signaling and trafficking by using a DOR mutant in which all Ser/Thr residues in the C terminus were mutated to Ala (DTS). We demonstrated that the DOR agonist D-[Pen(2),Pen(5)]enkephalin could induce receptor internalization and adenylyl cyclase (AC) desensitization of DTS, but with comparatively slower kinetics than those observed with wild type DOR. Blockade of the internalization of DTS by the dominant-negative mutant dynamin, dynamin K44E, did not affect AC desensitization. However, depletion of beta-arrestins almost totally blocked both internalization and AC desensitization of DTS. A BRET assay suggested that DOR phosphorylation promotes receptor selectivity for beta-arrestin 2 over beta-arrestin 1. Furthermore, in mouse embryonic fibroblast (MEF) cells lacking either beta-arrestin 1 (beta arr1(-/-)) or beta-arrestin 2 (beta arr2(-/-)), agonist-induced DTS desensitization and internalization were similar to that observed in wild type MEFs. In contrast, although DOR internalization decreased in both beta arr1(-/-) MEFs and beta arr2(-/-) MEFs, DPDPE-induced DOR desensitization was significantly reduced in beta arr2(-/-) MEFs, but not in beta arr1(-/-) MEFs. Additionally, the BRET assay suggested that depletion of phosphorylation did not influence the stability of the receptor-beta-arrestin complex. Consistent with this observation, DTS did not recycle after internalization, which is like wild type DOR. Taken together, these results indicate that receptor phosphorylation confers DOR selectivity for beta-arrestin 2 without affecting the stability of the receptor-beta-arrestin complex and the fate of the internalized receptor.
在本研究中,我们通过使用一种C末端所有丝氨酸/苏氨酸残基均突变为丙氨酸的δ-阿片受体(DOR)突变体(DTS),研究了受体磷酸化和β-抑制蛋白在DOR信号传导和转运中的作用。我们证明,DOR激动剂D-[Pen(2),Pen(5)]脑啡肽可诱导DTS的受体内化和腺苷酸环化酶(AC)脱敏,但动力学较野生型DOR观察到的情况相对较慢。显性负性突变体发动蛋白(dynamin)K44E对DTS内化的阻断并不影响AC脱敏。然而,β-抑制蛋白的缺失几乎完全阻断了DTS的内化和AC脱敏。生物发光共振能量转移(BRET)分析表明,DOR磷酸化促进受体对β-抑制蛋白2而非β-抑制蛋白1的选择性。此外,在缺乏β-抑制蛋白1(β arr1(-/-))或β-抑制蛋白2(β arr2(-/-))的小鼠胚胎成纤维细胞(MEF)中,激动剂诱导的DTS脱敏和内化与野生型MEF中观察到的情况相似。相反,尽管在β arr1(-/-) MEF和β arr2(-/-) MEF中DOR内化均减少,但在β arr2(-/-) MEF中,DPDPE诱导的DOR脱敏显著降低,而在β arr1(-/-) MEF中则未降低。此外,BRET分析表明,磷酸化的缺失并不影响受体-β-抑制蛋白复合物的稳定性。与该观察结果一致,DTS内化后不会再循环,这与野生型DOR类似。综上所述,这些结果表明受体磷酸化赋予DOR对β-抑制蛋白2的选择性,而不影响受体-β-抑制蛋白复合物的稳定性和内化受体的命运。