Huang Y R, Knippenberg S, Hajgató B, François J-P, Deng J K, Deleuze M S
Research group of Theoretical Chemistry, Department SBG, University of Hasselt, Agoralaan, Gebouw D, B3590 Diepenbeek, Belgium.
J Phys Chem A. 2007 Jul 5;111(26):5879-97. doi: 10.1021/jp0719964. Epub 2007 Jun 13.
The main purpose of the present work is to predict from benchmark many-body quantum mechanical calculations the results of experimental studies of the valence electronic structure of dimethoxymethane employing electron momentum spectroscopy, and to establish once and for all the guidelines that should systematically be followed in order to reliably interpret the results of such experiments on conformationally versatile molecules. In a first step, accurate calculations of the energy differences between stationary points on the potential energy surface of this molecule are performed using Hartree-Fock (HF) theory and post-HF treatments of improving quality (MP2, MP3, CCSD, CCSD(T), along with basis sets of increasing size. This study focuses on the four conformers of this molecule, namely the trans-trans (TT), trans-gauche (TG), gauche-gauche (G+G+), and gauche-gauche (G+G-) structures, belonging to the C2v, C1, C2, and Cs symmetry point groups, respectively. A focal point analysis supplemented by suited extrapolations to the limit of asymptotically complete basis sets is carried out to determine how the conformational energy differences at 0 K approach the full CI limit. In a second step, statistical thermodynamics accounting for hindered rotations is used to calculate Gibbs free energy corrections to the above energy differences, and to evaluate the abundance of each conformer in the gas phase. It is found that, at room temperature, the G+G+ species accounts for 96% of the conformational mixture characterizing dimethoxymethane. In a third step, the valence one-electron and shake-up ionization spectrum of dimethoxymethane is analyzed according to calculations on the G+G+ conformer alone by means of one-particle Green's function [1p-GF] theory along with the benchmark third-order algebraic diagrammatic construction [ADC(3)] scheme. A complete breakdown of the orbital picture of ionization is noted at electron binding energies above 22 eV. A comparison with available (e,2e) ionization spectra enables us to identify specific fingerprints of through-space orbital interactions associated with the anomeric effect. At last, based on our 1p-GF/ADC(3) assignment of spectral bands, accurate and spherically averaged (e,2e) electron momentum distributions at an electron impact energy of 1200 eV are computed from the related Dyson orbitals. Very significant discrepancies are observed with momentum distributions obtained for several outer-valence levels using standard Kohn-Sham orbitals.
本研究的主要目的是根据基准多体量子力学计算,预测采用电子动量谱对二甲氧基甲烷价电子结构进行实验研究的结果,并一劳永逸地确立为可靠解释此类对构象多样分子的实验结果而应系统遵循的指导原则。第一步,使用哈特里 - 福克(HF)理论以及质量不断提高的后HF处理方法(MP2、MP3、CCSD、CCSD(T)),并结合不断增大尺寸的基组,对该分子势能面上驻点之间的能量差进行精确计算。本研究聚焦于该分子的四种构象异构体,即反式 - 反式(TT)、反式 - gauche(TG)、gauche - gauche(G + G +)和gauche - gauche(G + G -)结构,它们分别属于C2v、C1、C2和Cs对称点群。进行了焦点分析,并辅以对渐近完备基组极限的适当外推,以确定0 K时的构象能量差如何趋近于完全CI极限。第二步,使用考虑受阻旋转的统计热力学来计算上述能量差的吉布斯自由能校正,并评估气相中每种构象异构体的丰度。结果发现,在室温下,G + G +构象异构体占表征二甲氧基甲烷的构象混合物的96%。第三步,仅根据对G + G +构象异构体的计算,借助单粒子格林函数[1p - GF]理论以及基准三阶代数图示构建[ADC(3)]方案,分析二甲氧基甲烷的价单电子和振激电离谱。在电子结合能高于22 eV时,注意到电离轨道图像的完全分解。与可用的(e,2e)电离谱进行比较,使我们能够识别与异头效应相关的空间轨道相互作用的特定特征。最后,基于我们对光谱带的1p - GF/ADC(3)归属,从相关戴森轨道计算出电子碰撞能量为1200 eV时准确且球平均的(e,2e)电子动量分布。与使用标准科恩 - 沈轨道获得的几个外层价电子水平的动量分布相比,观察到非常显著的差异。