Bailey Michael F, Van der Schans Edwin J C, Millar David P
Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
Biochemistry. 2007 Jul 10;46(27):8085-99. doi: 10.1021/bi6024148. Epub 2007 Jun 14.
Upon associating with a proofreading polymerase, the nascent 3' end of a DNA primer/template has two possible fates. Depending upon its suitability as a substrate for template-directed extension or postsynthetic repair, it will bind either to the 5'-3' polymerase active site, yielding a polymerizing complex, or to the 3'-5' exonuclease site, yielding an editing complex. In this investigation, we use a combination of biochemical and biophysical techniques to probe the stoichiometry, thermodynamic, and kinetic stability of the polymerizing and editing complexes. We use the Klenow fragment of Escherichia coli DNA polymerase I (KF) as a model proofreading polymerase and oligodeoxyribonucleotide primer/templates as model DNA substrates. Polymerizing complexes are produced by mixing KF with correctly base paired (matched) primer/templates, whereas editing complexes are produced by mixing KF with multiply mismatched primer/templates. Electrophoretic mobility shift titrations carried out with matched and multiply mismatched primer/templates give rise to markedly different electrophoretic patterns. In the case of the matched primer/template, the KF.DNA complex is represented by a slow moving band. However, in the case of the multiply mismatched primer/template, the complex is predominantly represented by a fast moving band. Analytical ultracentrifugation measurements indicate that the fast and slow moving bands correspond to 1:1 and 2:1 KF.DNA complexes, respectively. Fluorescence anisotropy titrations reveal that KF binds with a higher degree of cooperativity to the matched primer/template. Taken together, these results indicate that KF is able to dimerize on a DNA primer/template and that dimerization is favored when the first molecule is bound in the polymerizing mode, but disfavored when it is bound in the editing mode. We suggest that self-association of the polymerase may play an important and as yet unexplored role in coordinating high-fidelity DNA replication.
与校对聚合酶结合后,DNA引物/模板新生的3'末端有两种可能的命运。根据其作为模板指导延伸或合成后修复底物的适用性,它将要么与5'-3'聚合酶活性位点结合,形成聚合复合物,要么与3'-5'核酸外切酶位点结合,形成编辑复合物。在本研究中,我们结合使用生化和生物物理技术来探究聚合和编辑复合物的化学计量、热力学和动力学稳定性。我们使用大肠杆菌DNA聚合酶I的Klenow片段(KF)作为模型校对聚合酶,寡脱氧核糖核苷酸引物/模板作为模型DNA底物。通过将KF与正确碱基配对(匹配)的引物/模板混合产生聚合复合物,而通过将KF与多重错配的引物/模板混合产生编辑复合物。用匹配和多重错配的引物/模板进行的电泳迁移率变动滴定产生明显不同的电泳图谱。在匹配引物/模板的情况下,KF.DNA复合物由一条慢速移动的条带表示。然而,在多重错配引物/模板的情况下,复合物主要由一条快速移动的条带表示。分析超速离心测量表明,快速和慢速移动的条带分别对应于1:1和2:1的KF.DNA复合物。荧光各向异性滴定表明,KF与匹配的引物/模板结合具有更高程度的协同性。综上所述,这些结果表明KF能够在DNA引物/模板上二聚化,并且当第一个分子以聚合模式结合时二聚化受到青睐,但当它以编辑模式结合时则不受青睐。我们认为聚合酶的自缔合可能在协调高保真DNA复制中发挥重要且尚未被探索的作用。