Tominaga Kazuto, Watanabe Tooru, Kobayashi Keiji, Nakamura Masaki, Kishi Koji, Kazuno Mitsuyoshi
School of Computer Science, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan.
Artif Life. 2007 Summer;13(3):223-47. doi: 10.1162/artl.2007.13.3.223.
Artificial chemistries are mainly used to construct virtual systems that are expected to show behavior similar to living systems. In this study, we explore possibilities of applying an artificial chemistry to modeling natural biochemical systems-or, to be specific, molecular computing systems-and show that it may be a useful modeling tool for molecular computation. We previously proposed an artificial chemistry based on string pattern matching and recombination. This article first demonstrates that this artificial chemistry is computationally universal if it has only rules that have one reactant or two reactants. We think this is a good property of an artificial chemistry that models molecular computing, because natural elementary chemical reactions, on which molecular computing is based, are mostly unimolecular or bimolecular. Then we give two illustrative example models for DNA computing in our artificial chemistry: one is for the type of computation called the Adleman-Lipton paradigm, and the other is for a DNA implementation of a finite automaton. Through the construction of these models we observe preferred properties of the artificial chemistry for modeling molecular computing, such as having no spatial structure and being flexible in choosing levels of abstraction.
人工化学主要用于构建预期能展现出与生命系统相似行为的虚拟系统。在本研究中,我们探索将人工化学应用于对自然生化系统——具体而言是分子计算系统——进行建模的可能性,并表明它可能是用于分子计算的一种有用的建模工具。我们之前提出了一种基于字符串模式匹配和重组的人工化学。本文首先证明,如果这种人工化学仅具有涉及一种反应物或两种反应物的规则,那么它在计算上是通用的。我们认为这是用于对分子计算进行建模的人工化学的一个良好特性,因为分子计算所基于的自然基本化学反应大多是单分子或双分子的。然后我们在我们的人工化学中给出两个用于DNA计算的说明性示例模型:一个用于所谓的阿德曼 - 利普顿范式的计算类型,另一个用于有限自动机的DNA实现。通过构建这些模型,我们观察到人工化学在对分子计算进行建模时的一些理想特性,比如没有空间结构以及在选择抽象层次方面具有灵活性。