Suppr超能文献

一种结合序列和二级结构数据对寡核苷酸色谱保留进行建模的统计学习方法。

A statistical learning approach to the modeling of chromatographic retention of oligonucleotides incorporating sequence and secondary structure data.

作者信息

Sturm Marc, Quinten Sascha, Huber Christian G, Kohlbacher Oliver

机构信息

Simulation of Biological Systems, Eberhard Karls University, Tübingen, Germany.

出版信息

Nucleic Acids Res. 2007;35(12):4195-202. doi: 10.1093/nar/gkm338. Epub 2007 Jun 13.

Abstract

We propose a new model for predicting the retention time of oligonucleotides. The model is based on nu support vector regression using features derived from base sequence and predicted secondary structure of oligonucleotides. Because of the secondary structure information, the model is applicable even at relatively low temperatures where the secondary structure is not suppressed by thermal denaturing. This makes the prediction of oligonucleotide retention time for arbitrary temperatures possible, provided that the target temperature lies within the temperature range of the training data. We describe different possibilities of feature calculation from base sequence and secondary structure, present the results and compare our model to existing models.

摘要

我们提出了一种预测寡核苷酸保留时间的新模型。该模型基于使用从寡核苷酸的碱基序列和预测的二级结构衍生而来的特征的核支持向量回归。由于二级结构信息,即使在二级结构未被热变性抑制的相对低温下,该模型也适用。这使得在目标温度处于训练数据的温度范围内时,能够预测任意温度下寡核苷酸的保留时间。我们描述了从碱基序列和二级结构进行特征计算的不同可能性,展示了结果并将我们的模型与现有模型进行了比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc39/1919494/791a00ed4566/gkm338f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验