Scholkopf B, Smola AJ, Williamson RC, Bartlett PL
GMD FIRST, Berlin, Germany.
Neural Comput. 2000 May;12(5):1207-45. doi: 10.1162/089976600300015565.
We propose a new class of support vector algorithms for regression and classification. In these algorithms, a parameter nu lets one effectively control the number of support vectors. While this can be useful in its own right, the parameterization has the additional benefit of enabling us to eliminate one of the other free parameters of the algorithm: the accuracy parameter epsilon in the regression case, and the regularization constant C in the classification case. We describe the algorithms, give some theoretical results concerning the meaning and the choice of nu, and report experimental results.
我们提出了一类用于回归和分类的新型支持向量算法。在这些算法中,参数nu能让人们有效地控制支持向量的数量。虽然这本身就很有用,但这种参数化还有额外的好处,即能使我们消除算法的另一个自由参数:回归情况下的精度参数epsilon以及分类情况下的正则化常数C。我们描述了这些算法,给出了一些关于nu的含义和选择的理论结果,并报告了实验结果。