Suppr超能文献

与小鼠原生殖细胞迁移过程中全基因组表观遗传重编程相关的细胞动力学。

Cellular dynamics associated with the genome-wide epigenetic reprogramming in migrating primordial germ cells in mice.

作者信息

Seki Yoshiyuki, Yamaji Masashi, Yabuta Yukihiro, Sano Mitsue, Shigeta Mayo, Matsui Yasuhisa, Saga Yumiko, Tachibana Makoto, Shinkai Yoichi, Saitou Mitinori

机构信息

Laboratory for Mammalian Germ Cell Biology, Center for Developmental Biology, RIKEN Kobe Institute, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan.

出版信息

Development. 2007 Jul;134(14):2627-38. doi: 10.1242/dev.005611. Epub 2007 Jun 13.

Abstract

We previously reported that primordial germ cells (PGCs) in mice erase genome-wide DNA methylation and histone H3 lysine9 dimethylation (H3K9me2), and instead acquire high levels of tri-methylation of H3K27 (H3K27me3) during their migration, a process that might be crucial for the re-establishment of potential totipotency in the germline. We here explored a cellular dynamics associated with this epigenetic reprogramming. We found that PGCs undergo erasure of H3K9me2 and upregulation of H3K27me3 in a progressive, cell-by-cell manner, presumably depending on their developmental maturation. Before or concomitant with the onset of H3K9 demethylation, PGCs entered the G2 arrest of the cell cycle, which apparently persisted until they acquired high H3K27me3 levels. Interestingly, PGCs exhibited repression of RNA polymerase II-dependent transcription, which began after the onset of H3K9me2 reduction in the G2 phase and tapered off after the acquisition of high-level H3K27me3. The epigenetic reprogramming and transcriptional quiescence were independent from the function of Nanos3. We found that before H3K9 demethylation, PGCs exclusively repress an essential histone methyltransferase, GLP, without specifically upregulating histone demethylases. We suggest the possibility that active repression of an essential enzyme and subsequent unique cellular dynamics ensures successful implementation of genome-wide epigenetic reprogramming in migrating PGCs.

摘要

我们之前报道过,小鼠原始生殖细胞(PGCs)在迁移过程中会消除全基因组的DNA甲基化和组蛋白H3赖氨酸9二甲基化(H3K9me2),取而代之的是获得高水平的组蛋白H3赖氨酸27三甲基化(H3K27me3),这一过程可能对生殖系中潜在全能性的重新建立至关重要。我们在此探索了与这种表观遗传重编程相关的细胞动力学。我们发现,PGCs以逐个细胞的渐进方式经历H3K9me2的消除和H3K27me3的上调,这可能取决于它们的发育成熟度。在H3K9去甲基化开始之前或同时,PGCs进入细胞周期的G2期停滞,这种停滞显然一直持续到它们获得高水平的H3K27me3。有趣的是,PGCs表现出RNA聚合酶II依赖性转录的抑制,这种抑制在G2期H3K9me2减少开始后开始,并在获得高水平的H3K27me3后逐渐减弱。表观遗传重编程和转录静止与Nanos3的功能无关。我们发现,在H3K9去甲基化之前,PGCs专门抑制一种必需的组蛋白甲基转移酶GLP,而没有特异性地上调组蛋白去甲基化酶。我们提出一种可能性,即对一种必需酶的主动抑制以及随后独特的细胞动力学确保了迁移中的PGCs全基因组表观遗传重编程的成功实施。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验