Spraker Matthew B, Yu Hong, Corcos Daniel M, Vaillancourt David E
Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60612, USA.
J Neurophysiol. 2007 Aug;98(2):821-34. doi: 10.1152/jn.00239.2007. Epub 2007 Jun 13.
The basal ganglia-thalamo-cortical loop is an important neural circuit that regulates motor control. A key parameter that the nervous system regulates is the level of force to exert against an object during tasks such as grasping. Previous studies indicate that the basal ganglia do not exhibit increased activity with increasing amplitude of force, although these conclusions are based mainly on the putamen. The present study used functional magnetic resonance imaging to investigate which regions in the basal ganglia, thalamus, and motor cortex display increased activity when producing pinch-grip contractions of increasing force amplitude. We found that the internal portion of the globus pallidus (GPi) and subthalamic nucleus (STN) had a positive increase in percent signal change with increasing force, whereas the external portion of the globus pallidus, anterior putamen, posterior putamen, and caudate did not. In the thalamus we found that the ventral thalamic regions increase in percent signal change and activation volume with increasing force amplitude. The contralateral and ipsilateral primary motor/somatosensory (M1/S1) cortices had a positive increase in percent signal change and activation volume with increasing force amplitude, and the contralateral M1/S1 had a greater increase in percent signal change and activation volume than the ipsilateral side. We also found that deactivation did not change across force in the motor cortex and basal ganglia, but that the ipsilateral M1/S1 had greater deactivation than the contralateral M1/S1. Our findings provide direct evidence that GPi and STN regulate the amplitude of force output. These findings emphasize the heterogeneous role of individual nuclei of the basal ganglia in regulating specific parameters of motor output.
基底神经节 - 丘脑 - 皮质环路是调节运动控制的重要神经回路。神经系统调节的一个关键参数是在诸如抓握等任务中对物体施加的力的大小。先前的研究表明,尽管这些结论主要基于壳核,但随着力的幅度增加,基底神经节并未表现出活动增加。本研究使用功能磁共振成像来研究基底神经节、丘脑和运动皮层中的哪些区域在产生力幅度增加的捏握收缩时表现出活动增加。我们发现,苍白球内侧部(GPi)和底丘脑核(STN)的信号变化百分比随力的增加呈正向增加,而苍白球外侧部、前壳核、后壳核和尾状核则没有。在丘脑中,我们发现腹侧丘脑区域的信号变化百分比和激活体积随力幅度的增加而增加。对侧和同侧的初级运动/躯体感觉(M1/S1)皮层的信号变化百分比和激活体积随力幅度的增加呈正向增加,且对侧M1/S1的信号变化百分比和激活体积的增加幅度大于同侧。我们还发现,运动皮层和基底神经节的失活在不同力水平下没有变化,但同侧M1/S1的失活程度大于对侧M1/S1。我们的研究结果提供了直接证据,表明GPi和STN调节力输出的幅度。这些发现强调了基底神经节各个核团在调节运动输出特定参数方面的异质性作用。