Suppr超能文献

单个基底神经节核团在力量幅度产生中的作用。

Role of individual basal ganglia nuclei in force amplitude generation.

作者信息

Spraker Matthew B, Yu Hong, Corcos Daniel M, Vaillancourt David E

机构信息

Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60612, USA.

出版信息

J Neurophysiol. 2007 Aug;98(2):821-34. doi: 10.1152/jn.00239.2007. Epub 2007 Jun 13.

Abstract

The basal ganglia-thalamo-cortical loop is an important neural circuit that regulates motor control. A key parameter that the nervous system regulates is the level of force to exert against an object during tasks such as grasping. Previous studies indicate that the basal ganglia do not exhibit increased activity with increasing amplitude of force, although these conclusions are based mainly on the putamen. The present study used functional magnetic resonance imaging to investigate which regions in the basal ganglia, thalamus, and motor cortex display increased activity when producing pinch-grip contractions of increasing force amplitude. We found that the internal portion of the globus pallidus (GPi) and subthalamic nucleus (STN) had a positive increase in percent signal change with increasing force, whereas the external portion of the globus pallidus, anterior putamen, posterior putamen, and caudate did not. In the thalamus we found that the ventral thalamic regions increase in percent signal change and activation volume with increasing force amplitude. The contralateral and ipsilateral primary motor/somatosensory (M1/S1) cortices had a positive increase in percent signal change and activation volume with increasing force amplitude, and the contralateral M1/S1 had a greater increase in percent signal change and activation volume than the ipsilateral side. We also found that deactivation did not change across force in the motor cortex and basal ganglia, but that the ipsilateral M1/S1 had greater deactivation than the contralateral M1/S1. Our findings provide direct evidence that GPi and STN regulate the amplitude of force output. These findings emphasize the heterogeneous role of individual nuclei of the basal ganglia in regulating specific parameters of motor output.

摘要

基底神经节 - 丘脑 - 皮质环路是调节运动控制的重要神经回路。神经系统调节的一个关键参数是在诸如抓握等任务中对物体施加的力的大小。先前的研究表明,尽管这些结论主要基于壳核,但随着力的幅度增加,基底神经节并未表现出活动增加。本研究使用功能磁共振成像来研究基底神经节、丘脑和运动皮层中的哪些区域在产生力幅度增加的捏握收缩时表现出活动增加。我们发现,苍白球内侧部(GPi)和底丘脑核(STN)的信号变化百分比随力的增加呈正向增加,而苍白球外侧部、前壳核、后壳核和尾状核则没有。在丘脑中,我们发现腹侧丘脑区域的信号变化百分比和激活体积随力幅度的增加而增加。对侧和同侧的初级运动/躯体感觉(M1/S1)皮层的信号变化百分比和激活体积随力幅度的增加呈正向增加,且对侧M1/S1的信号变化百分比和激活体积的增加幅度大于同侧。我们还发现,运动皮层和基底神经节的失活在不同力水平下没有变化,但同侧M1/S1的失活程度大于对侧M1/S1。我们的研究结果提供了直接证据,表明GPi和STN调节力输出的幅度。这些发现强调了基底神经节各个核团在调节运动输出特定参数方面的异质性作用。

相似文献

1
Role of individual basal ganglia nuclei in force amplitude generation.
J Neurophysiol. 2007 Aug;98(2):821-34. doi: 10.1152/jn.00239.2007. Epub 2007 Jun 13.
2
Subthalamic nucleus and internal globus pallidus scale with the rate of change of force production in humans.
Neuroimage. 2004 Sep;23(1):175-86. doi: 10.1016/j.neuroimage.2004.04.040.
3
Role of the basal ganglia and frontal cortex in selecting and producing internally guided force pulses.
Neuroimage. 2007 Jul 1;36(3):793-803. doi: 10.1016/j.neuroimage.2007.03.002. Epub 2007 Mar 13.
5
Differential activation of dorsal basal ganglia during externally and self paced sequences of arm movements.
Neuroreport. 1998 May 11;9(7):1567-73. doi: 10.1097/00001756-199805110-00058.
7
Subthalamic Nucleus Deep Brain Stimulation Modulates 2 Distinct Neurocircuits.
Ann Neurol. 2020 Dec;88(6):1178-1193. doi: 10.1002/ana.25906. Epub 2020 Oct 13.
8
Effects of visual and auditory feedback on sensorimotor circuits in the basal ganglia.
J Neurophysiol. 2008 Jun;99(6):3042-51. doi: 10.1152/jn.01108.2007. Epub 2008 Feb 20.
9
Direct Activation of Primary Motor Cortex during Subthalamic But Not Pallidal Deep Brain Stimulation.
J Neurosci. 2020 Mar 4;40(10):2166-2177. doi: 10.1523/JNEUROSCI.2480-19.2020. Epub 2020 Feb 4.

引用本文的文献

1
Force control deficits in rapid eye movement behavior disorder and Parkinson's disease.
Clin Neurophysiol. 2025 May 25;176:2110763. doi: 10.1016/j.clinph.2025.2110763.
2
Functional and free-water imaging in rapid eye movement behaviour disorder and Parkinson's disease.
Brain Commun. 2024 Oct 10;6(5):fcae344. doi: 10.1093/braincomms/fcae344. eCollection 2024.
3
A neurocomputational view of the effects of Parkinson's disease on speech production.
Front Hum Neurosci. 2024 May 15;18:1383714. doi: 10.3389/fnhum.2024.1383714. eCollection 2024.
4
Novel characteristics of the temporal transition to maximum tongue pressure in Parkinson's disease: A pilot study.
Clin Park Relat Disord. 2024 Feb 25;10:100244. doi: 10.1016/j.prdoa.2024.100244. eCollection 2024.
5
fMRI changes during multi-limb movements in Parkinson's disease.
Front Hum Neurosci. 2023 Nov 9;17:1248636. doi: 10.3389/fnhum.2023.1248636. eCollection 2023.
7
Dynamic modulation of subthalamic nucleus activity facilitates adaptive behavior.
PLoS Biol. 2023 Jun 1;21(6):e3002140. doi: 10.1371/journal.pbio.3002140. eCollection 2023 Jun.
8
Are the digit ratio (2D:4D) and hand grip strength related to Parkinson disease in elderly males?
BMC Sports Sci Med Rehabil. 2023 Mar 20;15(1):34. doi: 10.1186/s13102-023-00642-2.
9
Reaching and Grasping Movements in Parkinson's Disease: A Review.
J Parkinsons Dis. 2022;12(4):1083-1113. doi: 10.3233/JPD-213082.
10
The impact of aging and reaching movements on grip stability control during manual precision tasks.
BMC Geriatr. 2021 Dec 15;21(1):703. doi: 10.1186/s12877-021-02663-3.

本文引用的文献

1
Role of the basal ganglia and frontal cortex in selecting and producing internally guided force pulses.
Neuroimage. 2007 Jul 1;36(3):793-803. doi: 10.1016/j.neuroimage.2007.03.002. Epub 2007 Mar 13.
2
The effects of inhibitory and facilitatory intracortical circuits on interhemispheric inhibition in the human motor cortex.
J Physiol. 2007 May 1;580(Pt.3):1021-32. doi: 10.1113/jphysiol.2006.126011. Epub 2007 Feb 15.
3
An update on functional neuroimaging of parkinsonism and dystonia.
Curr Opin Neurol. 2006 Aug;19(4):412-9. doi: 10.1097/01.wco.0000236623.68625.54.
4
Three-dimensional locations and boundaries of motor and premotor cortices as defined by functional brain imaging: a meta-analysis.
Neuroimage. 2006 Jul 15;31(4):1453-74. doi: 10.1016/j.neuroimage.2006.02.004. Epub 2006 Mar 29.
5
Force related activations in rhythmic sequence production.
Neuroimage. 2005 Oct 1;27(4):909-18. doi: 10.1016/j.neuroimage.2005.05.010.
7
A functional MRI study of automatic movements in patients with Parkinson's disease.
Brain. 2005 Oct;128(Pt 10):2250-9. doi: 10.1093/brain/awh569. Epub 2005 Jun 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验