Jang Youngho, Wang Huihua, Xi Jinkun, Mueller Robert A, Norfleet Edward A, Xu Zhelong
Department of Anesthesiology, University of North Carolina at Chapel Hill, NC 27599-7010, USA.
Cardiovasc Res. 2007 Jul 15;75(2):426-33. doi: 10.1016/j.cardiores.2007.05.015. Epub 2007 May 17.
Our aim was to determine if NO prevents mitochondrial oxidant damage by mobilizing intracellular free zinc (Zn(2+)).
Zn(2+) levels were determined by imaging enzymatically isolated adult rat cardiomyocytes loaded with Newport Green DCF. Mitochondrial membrane potential (DeltaPsi(m)) was assessed by imaging cardiomyocytes loaded with tetramethylrhodamine ethyl ester (TMRE).
S-nitroso-N-acetylpenicillamine (SNAP) dramatically increased Zn(2+), which was blocked by both ODQ and NS2028, two specific inhibitors of guanylyl cyclase. The protein kinase G (PKG) inhibitor KT5823 blocked the effect of SNAP while the PKG activator 8-Br-cGMP mimicked the action of SNAP, indicating that the cGMP/PKG pathway is responsible for the effect of SNAP. The increased Zn(2+) was prevented by 5-hydroxydecanoate (5HD) but was mimicked by diazoxide, implying that mitochondrial K(ATP) channel opening may account for this effect. Since chelation of Zn(2+) blocked the preventive effect of SNAP on H(2)O(2)-induced loss of DeltaPsi(m) and exogenous zinc (1 microM ZnCl(2)) prevented dissipation of DeltaPsi(m), Zn(2+) may play a critical role in the protective effect of NO. The MEK (mitogen-activated protein kinase or extracellular signal-regulated kinase) inhibitor PD98059 blocked the preventive effects of SNAP and zinc on DeltaPsi(m), indicating that extracellular signal-regulated kinase (ERK) mediates the protective effect of both these compounds on mitochondrial oxidant damage. A Western blot analysis further showed that ZnCl(2) significantly enhances phosphorylation of ERK, confirming the involvement of ERK in the action of Zn(2+).
In isolated cardiomyocytes, NO mobilizes endogenous zinc by opening mitochondrial K(ATP) channels through the cGMP/PKG pathway. In these cells, Zn(2+) may be an important mediator of the action of NO on the mitochondrial death pathway.
我们的目的是确定一氧化氮(NO)是否通过动员细胞内游离锌(Zn(2+))来预防线粒体氧化损伤。
通过对负载纽波特绿DCF的成年大鼠心肌细胞进行酶解分离后成像来测定Zn(2+)水平。通过对负载四甲基罗丹明乙酯(TMRE)的心肌细胞进行成像来评估线粒体膜电位(ΔΨm)。
S-亚硝基-N-乙酰青霉胺(SNAP)显著增加了Zn(2+),而鸟苷酸环化酶的两种特异性抑制剂ODQ和NS2028均可阻断这一作用。蛋白激酶G(PKG)抑制剂KT5823可阻断SNAP的作用,而PKG激活剂8-溴-cGMP可模拟SNAP的作用,这表明cGMP/PKG途径介导了SNAP的作用。5-羟基癸酸(5HD)可阻止Zn(2+)增加,但二氮嗪可模拟这一作用,这意味着线粒体ATP敏感性钾通道(K(ATP)通道)开放可能是其原因。由于螯合Zn(2+)可阻断SNAP对过氧化氢(H(2)O(2))诱导的ΔΨm丧失的预防作用,而外源性锌(1 microM ZnCl(2))可防止ΔΨm消散,因此Zn(2+)可能在NO的保护作用中起关键作用。丝裂原活化蛋白激酶(MEK)抑制剂PD98059可阻断SNAP和锌对ΔΨm的预防作用,这表明细胞外信号调节激酶(ERK)介导了这两种化合物对线粒体氧化损伤的保护作用。蛋白质印迹分析进一步表明,ZnCl(2)可显著增强ERK的磷酸化,证实了ERK参与了Zn(2+)的作用。
在分离的心肌细胞中,NO通过cGMP/PKG途径开放线粒体K(ATP)通道来动员内源性锌。在这些细胞中,Zn(2+)可能是NO在线粒体死亡途径中作用的重要介质。