Ballermann Barbara J
University of Alberta, Edmonton, Alberta, Canada.
Nephron Physiol. 2007;106(2):p19-25. doi: 10.1159/000101796. Epub 2007 Jun 6.
The endothelium that lines glomerular capillaries shares many properties with endothelial cells in general, but unlike most endothelial cells, it is extremely flat and densely perforated by transendothelial cell pores, the fenestrae. Until recently, it was believed that the fenestrae allow free passage of large proteins, and that the glomerular endothelium contributes little to the permselectivity of the glomerular capillary wall.
Key studies addressing the nature of the glomerular capillary endothelium and its contribution to glomerular permselectivity were reviewed.
Glomerular endothelial cell flattening and fenestrae formation requires signals from differentiated podocytes, and from the glomerular basement membrane. Deletion of VEGF-A from podocytes prevents flattening and fenestration of glomerular endothelium. Application of VEGF-A to endothelial cells in vivo stimulates fenestrae formation, and neutralization of VEGF-A by soluble VEGF receptor 1 (sFlt-1) or anti-VEGF antibodies results in loss of glomerular fenestrae, and proteinuria. Neutralizing TGF-beta1 antibodies, deletion of laminin alpha3 in mice or laminin beta3 in humans cause similar defects. The glomerular endotheliosis lesion of pre-eclampsia is due to the placenta-derived inhibitors sFlt-1 and sEndoglin, which block the VEGF-A/VEGF receptor and TGF-beta/endoglin signaling, respectively, causing the loss of glomerular endothelial cell fenestrae, cell swelling and proteinuria. The glomerular endothelium is covered by a glycocalyx that extends into the fenestrae and by a more loosely associated endothelial cell surface layer of glycoproteins. Mathematical analyses of functional permselectivity studies have concluded that the glomerular endothelial cell glycocalyx and its associated surface layer account for the retention of up to 95% of proteins within the circulation. Furthermore, the fenestrae are critical for the maintenance of the high hydraulic conductivity of the glomerular capillary wall, and their loss results in a reduction in the glomerular filtration rate.
Loss of GFR and proteinuria can result from glomerular endothelial cell injury.
肾小球毛细血管的内皮细胞总体上与内皮细胞有许多共同特性,但与大多数内皮细胞不同的是,它极其扁平,并且被跨内皮细胞孔(即窗孔)密集穿孔。直到最近,人们还认为窗孔允许大蛋白质自由通过,并且肾小球内皮对肾小球毛细血管壁的滤过选择性贡献不大。
回顾了关于肾小球毛细血管内皮细胞的性质及其对肾小球滤过选择性贡献的关键研究。
肾小球内皮细胞的扁平化和窗孔形成需要来自分化的足细胞以及肾小球基底膜的信号。足细胞中VEGF-A的缺失会阻止肾小球内皮细胞的扁平化和窗孔形成。在体内将VEGF-A应用于内皮细胞会刺激窗孔形成,而可溶性VEGF受体1(sFlt-1)或抗VEGF抗体对VEGF-A的中和会导致肾小球窗孔丧失和蛋白尿。中和TGF-β1抗体、小鼠中laminin α3缺失或人类中laminin β3缺失会导致类似缺陷。先兆子痫的肾小球内皮病变是由于胎盘来源的抑制剂sFlt-1和sEndoglin分别阻断了VEGF-A/VEGF受体和TGF-β/内皮糖蛋白信号,导致肾小球内皮细胞窗孔丧失、细胞肿胀和蛋白尿。肾小球内皮被延伸至窗孔的糖萼以及一层与内皮细胞表面联系较松散的糖蛋白覆盖。功能滤过选择性研究的数学分析得出结论,肾小球内皮细胞糖萼及其相关表面层可截留循环中高达95%的蛋白质。此外,窗孔对于维持肾小球毛细血管壁的高水导率至关重要,其丧失会导致肾小球滤过率降低。
肾小球内皮细胞损伤可导致肾小球滤过率降低和蛋白尿。