Xu Wei, Zheng Chunfang, Sankoff David
Department of Mathematics and Statistics, University of Ottawa, 585 King Edward Ave., Ottawa, ON, Canada, K1N 6N5.
J Comput Biol. 2007 May;14(4):423-35. doi: 10.1089/cmb.2007.A004.
We study the probability distribution of the distance d = n + chi - kappa - psi between two genomes with n markers distributed on chi chromosomes and with breakpoint graphs containing kappa cycles and psi "good" paths, under the hypothesis of random gene order. We interpret the random order assumption in terms of a stochastic method for constructing the bicolored breakpoint graph. We show that the limiting expectation of E[d] = n - 1/2chi - 1/2 log n+chi/2chi. We also calculate the variance, the effect of different numbers of chromosomes in the two genomes, and the number of plasmids, or circular chromosomes, generated by the random breakpoint graph construction. A more realistic model allows intra- and interchromosomal operations to have different probabilities, and simulations show that for a fixed number of rearrangements, kappa and d depend on the relative proportions of the two kinds of operation.
在随机基因顺序的假设下,我们研究了两个基因组之间距离(d = n + \chi - \kappa - \psi)的概率分布,其中(n)个标记分布在(\chi)条染色体上,且断点图包含(\kappa)个循环和(\psi)条“好”路径。我们根据构建双色断点图的随机方法来解释随机顺序假设。我们表明(E[d])的极限期望为(n - \frac{1}{2}\chi - \frac{1}{2}\log n + \frac{\chi}{2\chi})。我们还计算了方差、两个基因组中不同染色体数量的影响以及由随机断点图构建产生的质粒或环状染色体的数量。一个更现实的模型允许染色体内部和染色体之间的操作具有不同的概率,并且模拟表明,对于固定数量的重排,(\kappa)和(d)取决于两种操作的相对比例。