Feijão Pedro, Martinez Fábio, Thévenin Annelyse
BMC Bioinformatics. 2015;16 Suppl 19(Suppl 19):S1. doi: 10.1186/1471-2105-16-S19-S1. Epub 2015 Dec 16.
Finding the smallest sequence of operations to transform one genome into another is an important problem in comparative genomics. The breakpoint graph is a discrete structure that has proven to be effective in solving distance problems, and the number of cycles in a cycle decomposition of this graph is one of the remarkable parameters to help in the solution of related problems. For a fixed k, the number of linear unichromosomal genomes (signed or unsigned) with n elements such that the induced breakpoint graphs have k disjoint cycles, known as the Hultman number, has been already determined. In this work we extend these results to multichromosomal genomes, providing formulas to compute the number of multichromosal genomes having a fixed number of cycles and/or paths. We obtain an explicit formula for circular multichromosomal genomes and recurrences for general multichromosomal genomes, and discuss how these series can be used to calculate the distribution and expected value of the rearrangement distance between random genomes.
找到将一个基因组转化为另一个基因组的最小操作序列是比较基因组学中的一个重要问题。断点图是一种离散结构,已被证明在解决距离问题方面很有效,并且该图的循环分解中的循环数量是有助于解决相关问题的显著参数之一。对于固定的k,具有n个元素的线性单染色体基因组(有符号或无符号)的数量,使得诱导的断点图有k个不相交的循环,即所谓的赫尔特曼数,已经确定。在这项工作中,我们将这些结果扩展到多染色体基因组,提供了计算具有固定数量循环和/或路径的多染色体基因组数量的公式。我们得到了环状多染色体基因组的显式公式和一般多染色体基因组的递推公式,并讨论了如何利用这些序列来计算随机基因组之间重排距离的分布和期望值。