Suppr超能文献

正常步态末期摆动阶段膝关节运动的肌肉协调性。

Muscular coordination of knee motion during the terminal-swing phase of normal gait.

作者信息

Arnold Allison S, Thelen Darryl G, Schwartz Michael H, Anderson Frank C, Delp Scott L

机构信息

Department of Bioengineering, Stanford University, 318 Campus Drive, Stanford, CA 94305-5450, USA.

出版信息

J Biomech. 2007;40(15):3314-24. doi: 10.1016/j.jbiomech.2007.05.006. Epub 2007 Jun 18.

Abstract

Children with cerebral palsy often walk with diminished knee extension during the terminal-swing phase, resulting in a troublesome "crouched" posture at initial contact and a shortened stride. Treatment of this gait abnormality is challenging because the factors that extend the knee during normal walking are not well understood, and because the potential of individual muscles to limit terminal-swing knee extension is unknown. This study analyzed a series of three-dimensional, muscle-driven dynamic simulations to quantify the angular accelerations of the knee induced by muscles and other factors during swing. Simulations were generated that reproduced the measured gait dynamics and muscle excitation patterns of six typically developing children walking at self-selected speeds. The knee was accelerated toward extension in the simulations by velocity-related forces (i.e., Coriolis and centrifugal forces) and by a number of muscles, notably the vasti in mid-swing (passive), the hip extensors in terminal swing, and the stance-limb hip abductors, which accelerated the pelvis upward. Knee extension was slowed in terminal swing by the stance-limb hip flexors, which accelerated the pelvis backward. The hamstrings decelerated the forward motion of the swing-limb shank, but did not contribute substantially to angular motions of the knee. Based on these data, we hypothesize that the diminished knee extension in terminal swing exhibited by children with cerebral palsy may, in part, be caused by weak hip extensors or by impaired hip muscles on the stance limb that result in abnormal accelerations of the pelvis.

摘要

患有脑瘫的儿童在摆动末期常常出现膝关节伸展减少的情况,导致在初始接触时出现麻烦的“蹲伏”姿势,步幅缩短。治疗这种步态异常具有挑战性,因为正常行走时伸展膝关节的因素尚未完全了解,而且单个肌肉限制摆动末期膝关节伸展的潜力也未知。本研究分析了一系列三维、肌肉驱动的动态模拟,以量化摆动期间肌肉和其他因素引起的膝关节角加速度。生成的模拟再现了六名发育正常的儿童以自选速度行走时测量到的步态动力学和肌肉兴奋模式。在模拟中,膝关节通过与速度相关的力(即科里奥利力和离心力)以及一些肌肉向伸展方向加速,特别是摆动中期的股四头肌(被动)、摆动末期髋关节伸肌以及支撑腿髋关节外展肌,后者使骨盆向上加速。在摆动末期,支撑腿髋关节屈肌使膝关节伸展减慢,因为这些肌肉使骨盆向后加速。腘绳肌减缓了摆动腿小腿的向前运动,但对膝关节的角运动贡献不大。基于这些数据,我们推测,患有脑瘫的儿童在摆动末期膝关节伸展减少,部分原因可能是髋关节伸肌无力,或者支撑腿髋关节肌肉受损导致骨盆异常加速。

相似文献

1
Muscular coordination of knee motion during the terminal-swing phase of normal gait.
J Biomech. 2007;40(15):3314-24. doi: 10.1016/j.jbiomech.2007.05.006. Epub 2007 Jun 18.
2
Contributions of muscles to terminal-swing knee motions vary with walking speed.
J Biomech. 2007;40(16):3660-71. doi: 10.1016/j.jbiomech.2007.06.006. Epub 2007 Jul 19.
3
Contributions of muscles and passive dynamics to swing initiation over a range of walking speeds.
J Biomech. 2010 May 28;43(8):1450-5. doi: 10.1016/j.jbiomech.2010.02.009. Epub 2010 Mar 16.
6
The influence of muscles on knee flexion during the swing phase of gait.
J Biomech. 1996 Jun;29(6):723-33. doi: 10.1016/0021-9290(95)00144-1.
7
Crouched postures reduce the capacity of muscles to extend the hip and knee during the single-limb stance phase of gait.
J Biomech. 2008;41(5):960-7. doi: 10.1016/j.jbiomech.2008.01.002. Epub 2008 Mar 4.
8
Adaptive control for backward quadrupedal walking V. Mutable activation of bifunctional thigh muscles.
J Neurophysiol. 1996 Feb;75(2):832-42. doi: 10.1152/jn.1996.75.2.832.
9
Muscle force redistributes segmental power for body progression during walking.
Gait Posture. 2004 Apr;19(2):194-205. doi: 10.1016/S0966-6362(03)00062-6.

引用本文的文献

1
Gait biomechanics and postural adaptations in forward head posture: a comparative cross-sectional study.
BMC Musculoskelet Disord. 2025 Aug 7;26(1):754. doi: 10.1186/s12891-025-08882-8.
2
Guidance in botulinum neurotoxin injection for lower extremity spasticity: Sihler's staining technique.
Surg Radiol Anat. 2023 Aug;45(8):1055-1062. doi: 10.1007/s00276-023-03178-9. Epub 2023 Jun 9.
3
Altered Muscle Contributions are Required to Support the Stance Limb During Voluntary Toe-Walking.
Front Bioeng Biotechnol. 2022 Apr 11;10:810560. doi: 10.3389/fbioe.2022.810560. eCollection 2022.
4
Effects of exoskeletal gait assistance on the recovery motion following tripping.
PLoS One. 2020 Feb 24;15(2):e0229150. doi: 10.1371/journal.pone.0229150. eCollection 2020.
5
Computational modeling of neuromuscular response to swing-phase robotic knee extension assistance in cerebral palsy.
J Biomech. 2019 Apr 18;87:142-149. doi: 10.1016/j.jbiomech.2019.02.025. Epub 2019 Mar 7.
6
Full-Body Musculoskeletal Model for Muscle-Driven Simulation of Human Gait.
IEEE Trans Biomed Eng. 2016 Oct;63(10):2068-79. doi: 10.1109/TBME.2016.2586891. Epub 2016 Jul 7.
7
Kinematic gait analysis using inertial sensors with subjects after stroke in two different arteries.
J Phys Ther Sci. 2014 Aug;26(8):1307-11. doi: 10.1589/jpts.26.1307. Epub 2014 Aug 30.
8
Adjusting kinematics and kinetics in a feedback-controlled toe walking model.
J Neuroeng Rehabil. 2012 Aug 25;9:60. doi: 10.1186/1743-0003-9-60.
9
Three-dimensional modular control of human walking.
J Biomech. 2012 Aug 9;45(12):2157-63. doi: 10.1016/j.jbiomech.2012.05.037. Epub 2012 Jun 21.
10
Electrical stimulation of the rectus femoris during pre-swing diminishes hip and knee flexion during the swing phase of normal gait.
IEEE Trans Neural Syst Rehabil Eng. 2010 Oct;18(5):523-30. doi: 10.1109/TNSRE.2010.2053150.

本文引用的文献

1
OpenSim: open-source software to create and analyze dynamic simulations of movement.
IEEE Trans Biomed Eng. 2007 Nov;54(11):1940-50. doi: 10.1109/TBME.2007.901024.
2
A baseline of dynamic muscle function during gait.
Gait Posture. 2006 Feb;23(2):211-21. doi: 10.1016/j.gaitpost.2005.02.004.
3
Muscles that support the body also modulate forward progression during walking.
J Biomech. 2006;39(14):2623-30. doi: 10.1016/j.jbiomech.2005.08.017. Epub 2005 Oct 10.
4
Dynamic motion planning for the design of robotic gait rehabilitation.
J Biomech Eng. 2005 Aug;127(4):672-9. doi: 10.1115/1.1979507.
5
Using computed muscle control to generate forward dynamic simulations of human walking from experimental data.
J Biomech. 2006;39(6):1107-15. doi: 10.1016/j.jbiomech.2005.02.010. Epub 2005 Jul 14.
6
Mechanics and energetics of swinging the human leg.
J Exp Biol. 2005 Feb;208(Pt 3):439-45. doi: 10.1242/jeb.01408.
7
A new method for estimating joint parameters from motion data.
J Biomech. 2005 Jan;38(1):107-16. doi: 10.1016/j.jbiomech.2004.03.009.
9
Partitioning the energetics of walking and running: swinging the limbs is expensive.
Science. 2004 Jan 2;303(5654):80-3. doi: 10.1126/science.1090704.
10
Spastic velocity threshold constrains functional performance in cerebral palsy.
Arch Phys Med Rehabil. 2003 Sep;84(9):1363-8. doi: 10.1016/s0003-9993(03)00199-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验