Suppr超能文献

牧场造林和重新造林对甲烷氧化细菌活性和种群动态的影响。

Effect of afforestation and reforestation of pastures on the activity and population dynamics of methanotrophic bacteria.

作者信息

Singh Brajesh K, Tate Kevin R, Kolipaka Gokul, Hedley Carolyn B, Macdonald Catriona A, Millard Peter, Murrell J Colin

机构信息

Macaulay Institute, Environmental Sciences, Aberdeen AB15 8QH, United Kingdom.

出版信息

Appl Environ Microbiol. 2007 Aug;73(16):5153-61. doi: 10.1128/AEM.00620-07. Epub 2007 Jun 15.

Abstract

We investigated the effect of afforestation and reforestation of pastures on methane oxidation and the methanotrophic communities in soils from three different New Zealand sites. Methane oxidation was measured in soils from two pine (Pinus radiata) forests and one shrubland (mainly Kunzea ericoides var. ericoides) and three adjacent permanent pastures. The methane oxidation rate was consistently higher in the pine forest or shrubland soils than in the adjacent pasture soils. A combination of phospholipid fatty acid (PLFA) and stable isotope probing (SIP) analyses of these soils revealed that different methanotrophic communities were active in soils under the different vegetations. The C18 PLFAs (signature of type II methanotrophs) predominated under pine and shrublands, and C16 PLFAs (type I methanotrophs) predominated under pastures. Analysis of the methanotrophs by molecular methods revealed further differences in methanotrophic community structure under the different vegetation types. Cloning and sequencing and terminal-restriction fragment length polymorphism analysis of the particulate methane oxygenase gene (pmoA) from different samples confirmed the PLFA-SIP results that methanotrophic bacteria related to type II methanotrophs were dominant in pine forest and shrubland, and type I methanotrophs (related to Methylococcus capsulatus) were dominant in all pasture soils. We report that afforestation and reforestation of pastures caused changes in methane oxidation by altering the community structure of methanotrophic bacteria in these soils.

摘要

我们研究了牧场造林和重新造林对来自新西兰三个不同地点土壤中甲烷氧化及甲烷营养群落的影响。在两片辐射松林和一片灌丛(主要为昆士艾蒿变种艾蒿)以及三个相邻的永久牧场的土壤中测量了甲烷氧化情况。松林或灌丛土壤中的甲烷氧化速率始终高于相邻牧场土壤。对这些土壤进行磷脂脂肪酸(PLFA)和稳定同位素探测(SIP)分析相结合的结果表明,不同植被下的土壤中活跃着不同的甲烷营养群落。在松林和灌丛下,C18 PLFAs(II型甲烷营养菌的特征)占主导,而在牧场下,C16 PLFAs(I型甲烷营养菌)占主导。通过分子方法对甲烷营养菌的分析揭示了不同植被类型下甲烷营养群落结构的进一步差异。对不同样本中颗粒态甲烷单加氧酶基因(pmoA)进行克隆测序和末端限制性片段长度多态性分析,证实了PLFA-SIP的结果,即与II型甲烷营养菌相关的甲烷营养细菌在松林和灌丛中占主导,而I型甲烷营养菌(与荚膜甲基球菌相关)在所有牧场土壤中占主导。我们报告称,牧场造林和重新造林通过改变这些土壤中甲烷营养细菌的群落结构,导致了甲烷氧化的变化。

相似文献

1
Effect of afforestation and reforestation of pastures on the activity and population dynamics of methanotrophic bacteria.
Appl Environ Microbiol. 2007 Aug;73(16):5153-61. doi: 10.1128/AEM.00620-07. Epub 2007 Jun 15.
4
Biochemical and molecular characterization of methanotrophs in soil from a pristine New Zealand beech forest.
FEMS Microbiol Lett. 2007 Oct;275(1):89-97. doi: 10.1111/j.1574-6968.2007.00885.x. Epub 2007 Aug 13.
5
Community Structure of Active Aerobic Methanotrophs in Red Mangrove (Kandelia obovata) Soils Under Different Frequency of Tides.
Microb Ecol. 2018 Apr;75(3):761-770. doi: 10.1007/s00248-017-1080-1. Epub 2017 Oct 11.
6
Radioactive fingerprinting of microorganisms that oxidize atmospheric methane in different soils.
Appl Environ Microbiol. 1999 Sep;65(9):4064-70. doi: 10.1128/AEM.65.9.4064-4070.1999.
7
Diversity of the active methanotrophic community in acidic peatlands as assessed by mRNA and SIP-PLFA analyses.
Environ Microbiol. 2008 Feb;10(2):446-59. doi: 10.1111/j.1462-2920.2007.01466.x. Epub 2007 Dec 17.
9
The active methanotrophic community in hydromorphic soils changes in response to changing methane concentration.
Environ Microbiol. 2006 Feb;8(2):321-33. doi: 10.1111/j.1462-2920.2005.00898.x.
10
Dry/Wet cycles change the activity and population dynamics of methanotrophs in rice field soil.
Appl Environ Microbiol. 2013 Aug;79(16):4932-9. doi: 10.1128/AEM.00850-13. Epub 2013 Jun 14.

引用本文的文献

2
Plant root carbon inputs drive methane production in tropical peatlands.
Sci Rep. 2025 Jan 25;15(1):3244. doi: 10.1038/s41598-025-87467-w.
3
Methane cycling in temperate forests.
Carbon Balance Manag. 2024 Oct 22;19(1):37. doi: 10.1186/s13021-024-00283-z.
5
Consistent trade-offs in ecosystem services between land covers with different production intensities.
Biol Rev Camb Philos Soc. 2021 Oct;96(5):1989-2008. doi: 10.1111/brv.12734. Epub 2021 May 24.
6
Degraded Land Restoration in Reinstating CH4 Sink.
Front Microbiol. 2016 Jun 14;7:923. doi: 10.3389/fmicb.2016.00923. eCollection 2016.
8
Environmental impacts on the diversity of methane-cycling microbes and their resultant function.
Front Microbiol. 2013 Aug 14;4:225. doi: 10.3389/fmicb.2013.00225. eCollection 2013.
9
Evidence of microbial regulation of biogeochemical cycles from a study on methane flux and land use change.
Appl Environ Microbiol. 2013 Jul;79(13):4031-40. doi: 10.1128/AEM.00095-13. Epub 2013 Apr 26.

本文引用的文献

1
Determination of the sedimentary microbial biomass by extractible lipid phosphate.
Oecologia. 1979 Jan;40(1):51-62. doi: 10.1007/BF00388810.
2
REMA: A computer-based mapping tool for analysis of restriction sites in multiple DNA sequences.
J Microbiol Methods. 2007 May;69(2):411-3. doi: 10.1016/j.mimet.2007.01.008. Epub 2007 Jan 24.
4
Kinetics of inhibition of methane oxidation by nitrate, nitrite, and ammonium in a humisol.
Appl Environ Microbiol. 1995 Aug;61(8):3129-35. doi: 10.1128/aem.61.8.3129-3135.1995.
5
The active methanotrophic community in hydromorphic soils changes in response to changing methane concentration.
Environ Microbiol. 2006 Feb;8(2):321-33. doi: 10.1111/j.1462-2920.2005.00898.x.
6
Global change: a green source of surprise.
Nature. 2006 Jan 12;439(7073):148-9. doi: 10.1038/439148a.
7
Methane-oxidizing bacteria in a California upland grassland soil: diversity and response to simulated global change.
Appl Environ Microbiol. 2005 May;71(5):2642-52. doi: 10.1128/AEM.71.5.2642-2652.2005.
8
Unravelling rhizosphere-microbial interactions: opportunities and limitations.
Trends Microbiol. 2004 Aug;12(8):386-93. doi: 10.1016/j.tim.2004.06.008.
9
10
Diversity and activity of methanotrophic bacteria in different upland soils.
Appl Environ Microbiol. 2003 Nov;69(11):6703-14. doi: 10.1128/AEM.69.11.6703-6714.2003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验