Suppr超能文献

使用混合效应潜变量模型对潜变量进行序列分析:无信息和有信息缺失数据的影响

Sequential analysis of latent variables using mixed-effect latent variable models: Impact of non-informative and informative missing data.

作者信息

Sébille Véronique, Hardouin Jean-Benoit, Mesbah Mounir

机构信息

Laboratoire de Biostatistique, Faculté de Pharmacie, Université de Nantes, 1 rue Gaston Veil, 44035 Nantes Cedex 1, France.

出版信息

Stat Med. 2007 Nov 30;26(27):4889-904. doi: 10.1002/sim.2959.

Abstract

Sequential methods allowing for early stopping of clinical trials are widely used in various therapeutic areas. These methods allow for the analysis of different types of endpoints (quantitative, qualitative, time to event) and often provide, in average, substantial reductions in sample size as compared with single-stage designs while maintaining pre-specified type I and II errors. Sequential methods are also used when analysing particular endpoints that cannot be directly measured, such as depression, quality of life, or cognitive functioning, which are often measured through questionnaires. These types of endpoints are usually referred to as latent variables and should be analysed with latent variable models. In addition, in most clinical trials studying such latent variables, incomplete data are not uncommon and the missing data process might also be non-ignorable. We investigated the impact of informative or non-informative missing data on the statistical properties of the double triangular test (DTT), combined with the mixed-effects Rasch model (MRM) for dichotomous responses or the traditional method based on observed patient's scores (S) to the questionnaire. The achieved type I errors for the DTT were usually close to the target value of 0.05 for both methods, but increased slightly for the MRM when informative missing data were present. The DTT was very close to the nominal power of 0.95 when the MRM was used, but substantially underpowered with the S method (reduction of about 23 per cent), irrespective of whether informative missing data were present or not. Moreover, the DTT using the MRM allowed for reaching a conclusion (under H(0) or H(1)) with fewer patients than the S method, the average sample number for the latter increasing importantly when the proportion of missing data increased. Incorporating MRM in sequential analysis of latent variables might provide a more powerful method than the traditional S method, even in the presence of non-informative or informative missing data.

摘要

允许早期终止临床试验的序贯方法在各个治疗领域广泛应用。这些方法可用于分析不同类型的终点指标(定量、定性、事件发生时间),并且与单阶段设计相比,通常平均能大幅减少样本量,同时保持预先设定的I类和II类错误。当分析无法直接测量的特定终点指标时,如抑郁、生活质量或认知功能,这些指标通常通过问卷进行测量,也会使用序贯方法。这类终点指标通常被称为潜在变量,应使用潜在变量模型进行分析。此外,在大多数研究此类潜在变量的临床试验中,不完全数据并不罕见,且缺失数据过程可能也不可忽略。我们研究了信息性或非信息性缺失数据对双三角检验(DTT)统计特性的影响,该检验结合了用于二分反应的混合效应Rasch模型(MRM)或基于患者问卷观察得分(S)的传统方法。对于这两种方法,DTT的实际I类错误通常接近目标值0.05,但当存在信息性缺失数据时,MRM的I类错误会略有增加。当使用MRM时,DTT非常接近名义检验效能0.95,但使用S方法时检验效能大幅不足(降低约23%),无论是否存在信息性缺失数据。此外,与S方法相比,使用MRM的DTT能够用更少的患者得出结论(在H(0)或H(1)下),当缺失数据比例增加时,后者的平均样本量会显著增加。在潜在变量的序贯分析中纳入MRM可能会提供一种比传统S方法更有效的方法,即使存在非信息性或信息性缺失数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验