Suppr超能文献

在存在信息缺失数据的情况下,通过 Rasch 模型验证患者报告的结果问卷时,应避免采用均值填补。

Imputation by the mean score should be avoided when validating a Patient Reported Outcomes questionnaire by a Rasch model in presence of informative missing data.

机构信息

EA 4275 Biostatistics, Clinical Research and Subjective Measures in Health Sciences, Faculties of Medicine and Pharmaceutical Sciences, University of Nantes, 1 rue Gaston Veil, BP 53508, 44035 Nantes Cedex 1, Nantes, France.

出版信息

BMC Med Res Methodol. 2011 Jul 14;11:105. doi: 10.1186/1471-2288-11-105.

Abstract

BACKGROUND

Nowadays, more and more clinical scales consisting in responses given by the patients to some items (Patient Reported Outcomes - PRO), are validated with models based on Item Response Theory, and more specifically, with a Rasch model. In the validation sample, presence of missing data is frequent. The aim of this paper is to compare sixteen methods for handling the missing data (mainly based on simple imputation) in the context of psychometric validation of PRO by a Rasch model. The main indexes used for validation by a Rasch model are compared.

METHODS

A simulation study was performed allowing to consider several cases, notably the possibility for the missing values to be informative or not and the rate of missing data.

RESULTS

Several imputations methods produce bias on psychometrical indexes (generally, the imputation methods artificially improve the psychometric qualities of the scale). In particular, this is the case with the method based on the Personal Mean Score (PMS) which is the most commonly used imputation method in practice.

CONCLUSIONS

Several imputation methods should be avoided, in particular PMS imputation. From a general point of view, it is important to use an imputation method that considers both the ability of the patient (measured for example by his/her score), and the difficulty of the item (measured for example by its rate of favourable responses). Another recommendation is to always consider the addition of a random process in the imputation method, because such a process allows reducing the bias. Last, the analysis realized without imputation of the missing data (available case analyses) is an interesting alternative to the simple imputation in this context.

摘要

背景

如今,越来越多的临床量表由患者对一些项目的反应组成(患者报告的结果-PRO),并用基于项目反应理论的模型,特别是用 Rasch 模型进行验证。在验证样本中,缺失数据很常见。本文的目的是比较十六种处理缺失数据的方法(主要基于简单插补),在 Rasch 模型对 PRO 进行心理计量验证的背景下。比较了用于 Rasch 模型验证的主要指标。

方法

进行了一项模拟研究,允许考虑几种情况,特别是缺失值是否具有信息性以及缺失数据的比率。

结果

几种插补方法对心理计量指标产生偏差(通常,插补方法人为地提高了量表的心理计量质量)。特别是基于个人平均分数(PMS)的方法就是这种情况,这是实践中最常用的插补方法。

结论

应避免使用几种插补方法,特别是 PMS 插补。从一般角度来看,重要的是使用一种既考虑患者能力(例如通过其得分来衡量),又考虑项目难度(例如通过其有利反应率来衡量)的插补方法。另一个建议是始终考虑在插补方法中添加随机过程,因为该过程可以减少偏差。最后,在这种情况下,不进行缺失数据插补(可用案例分析)的分析是简单插补的一个有趣替代方案。

相似文献

5
Missing data in a multi-item instrument were best handled by multiple imputation at the item score level.
J Clin Epidemiol. 2014 Mar;67(3):335-42. doi: 10.1016/j.jclinepi.2013.09.009. Epub 2013 Dec 2.
6
Imputation and missing indicators for handling missing data in the development and deployment of clinical prediction models: A simulation study.
Stat Methods Med Res. 2023 Aug;32(8):1461-1477. doi: 10.1177/09622802231165001. Epub 2023 Apr 27.
7
Passive imputation and parcel summaries are both valid to handle missing items in studies with many multi-item scales.
Stat Methods Med Res. 2018 Apr;27(4):1128-1140. doi: 10.1177/0962280216654511. Epub 2016 Jun 22.
8
Predicting missing quality of life data that were later recovered: an empirical comparison of approaches.
Clin Trials. 2010 Aug;7(4):333-42. doi: 10.1177/1740774510374626. Epub 2010 Jun 24.
9
Rasch-family models are more valuable than score-based approaches for analysing longitudinal patient-reported outcomes with missing data.
Stat Methods Med Res. 2016 Oct;25(5):2067-2087. doi: 10.1177/0962280213515570. Epub 2013 Dec 16.
10
Review: a gentle introduction to imputation of missing values.
J Clin Epidemiol. 2006 Oct;59(10):1087-91. doi: 10.1016/j.jclinepi.2006.01.014. Epub 2006 Jul 11.

引用本文的文献

1
The impact of missing data rates and imputation methods on the assumption of unidimensionality.
PLoS One. 2025 Apr 30;20(4):e0321344. doi: 10.1371/journal.pone.0321344. eCollection 2025.
5
Missing Data in Patient-Reported Outcomes Research: Utilizing Multiple Imputation to Address an Unavoidable Problem.
Ann Surg Oncol. 2023 Dec;30(13):8074-8082. doi: 10.1245/s10434-023-14345-y. Epub 2023 Oct 4.
7
Using item response theory with health system data to identify latent groups of patients with multiple health conditions.
PLoS One. 2018 Nov 26;13(11):e0206915. doi: 10.1371/journal.pone.0206915. eCollection 2018.

本文引用的文献

1
Investigation and Treatment of Missing Item Scores in Test and Questionnaire Data.
Multivariate Behav Res. 2003 Oct 1;38(4):505-28. doi: 10.1207/s15327906mbr3804_4.
2
Influence of Imputation and EM Methods on Factor Analysis when Item Nonresponse in Questionnaire Data is Nonignorable.
Multivariate Behav Res. 2000 Jul 1;35(3):321-64. doi: 10.1207/S15327906MBR3503_03.
3
The Prostate Care Questionnaire for Carers (PCQ-C): reliability, validity and acceptability.
BMC Health Serv Res. 2009 Dec 11;9:229. doi: 10.1186/1472-6963-9-229.
5
Simple imputation methods were inadequate for missing not at random (MNAR) quality of life data.
Health Qual Life Outcomes. 2008 Aug 4;6:57. doi: 10.1186/1477-7525-6-57.
6
Multiple imputation of discrete and continuous data by fully conditional specification.
Stat Methods Med Res. 2007 Jun;16(3):219-42. doi: 10.1177/0962280206074463.
8
Dealing with missing data in a multi-question depression scale: a comparison of imputation methods.
BMC Med Res Methodol. 2006 Dec 13;6:57. doi: 10.1186/1471-2288-6-57.
9
VEINES-QOL/Sym questionnaire was a reliable and valid disease-specific quality of life measure for deep venous thrombosis.
J Clin Epidemiol. 2006 Oct;59(10):1049-56. doi: 10.1016/j.jclinepi.2005.10.016. Epub 2006 Jun 23.
10
Modelling non-ignorable missing-data mechanisms with item response theory models.
Br J Math Stat Psychol. 2005 May;58(Pt 1):1-17. doi: 10.1348/000711005X47168.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验