Schiro Perry G, Kuyper Christopher L, Chiu Daniel T
Department of Chemistry, University of Washington, Seattle, WA 98195-1700, USA.
Electrophoresis. 2007 Jul;28(14):2430-8. doi: 10.1002/elps.200600730.
This paper describes the use of two-beam line-confocal detection geometry for measuring the total mobility of individual molecules undergoing continuous-flow CE separation. High-sensitivity single-molecule confocal detection is usually performed with a diffraction limited focal spot (approximately 500 nm in diameter), which necessitates the use of nanometer-sized channels to ensure all molecules flow through the detection volume. To allow for the use of larger channels that are a few micrometers in width, we employed cylindrical optics to define a rectangular illumination area that is diffraction-limited (approximately 500 nm) in width, but a few micrometers in length to match the width of the microchannel. We present detailed studies that compare the performance of this line-confocal detection geometry with the more widely used point-confocal geometry. Overall, we found line-confocal detection to provide the highest combination of signal-to-background ratio and spatial detection efficiency when used with micrometer-sized channels. For example, in a 2 microm wide channel we achieved a 94% overall detection efficiency for single Alexa488 dye molecules when a 2 microm x 0.5 microm illumination area was used, but only 34% detection efficiency with a 0.5 microm-diameter detection spot. To carry out continuous-flow CE, we used two-beam fluorescent cross-correlation spectroscopy where the transit time of each molecule is determined by cross-correlating the fluorescence registered by two spatially offset line-confocal detectors. We successfully separated single molecules of FITC, FITC-tagged glutamate, and FITC-tagged glycine.
本文描述了使用双光束线共焦检测几何结构来测量在连续流动毛细管电泳分离中单个分子的总迁移率。高灵敏度单分子共焦检测通常使用衍射极限焦点(直径约500 nm)进行,这就需要使用纳米尺寸的通道以确保所有分子都流经检测体积。为了能够使用宽度为几微米的更大通道,我们采用柱面光学元件来定义一个矩形照明区域,该区域宽度为衍射极限(约500 nm),但长度为几微米以匹配微通道的宽度。我们进行了详细研究,将这种线共焦检测几何结构的性能与更广泛使用的点共焦几何结构进行了比较。总体而言,我们发现当与微米尺寸的通道一起使用时,线共焦检测能提供最高的信噪比和空间检测效率组合。例如,在一个2微米宽的通道中,当使用2微米×0.5微米的照明区域时,我们对单个Alexa488染料分子的总体检测效率达到了94%,但使用直径为0.5微米的检测点时检测效率仅为34%。为了进行连续流动毛细管电泳,我们使用了双光束荧光互相关光谱法,其中每个分子的通过时间是通过对由两个空间偏移的线共焦探测器记录的荧光进行互相关来确定的。我们成功分离了异硫氰酸荧光素(FITC)、FITC标记的谷氨酸和FITC标记的甘氨酸的单分子。