Tafazzoli Mohsen, Ghiasi Mina
Department of Chemistry, Sharif University of Technology, PO Box 11365-9516 Tehran, Iran.
Carbohydr Res. 2007 Oct 15;342(14):2086-96. doi: 10.1016/j.carres.2007.05.032. Epub 2007 Jun 2.
The (1)H-(13)C coupling constants of methyl alpha- and beta-pyranosides of D-glucose and D-galactose have been measured by one-dimensional and two-dimensional (1)H-(13)C heteronuclear zero and double quantum, phase sensitive J-HMBC spectra to determine a complete set of coupling constants ((1)J(CH), (2)J(CH), (3)J(CH), (2)J(HH), and (3)J(HH)) within the exocyclic hydroxymethyl group (CH(2)OH) for each compound. In parallel with these experimental studies, structure, energy, and potential energy surfaces of the hydroxymethyl group for these compounds were determined employing quantum mechanical calculations at the B3LYP level using the 6-311++G( * *) basis set. Values of the vicinal coupling constants involving (1)H and (13)C in the C5-C6 (omega) and C6-O6 (theta) torsion angles in the aldohexopyranoside model compounds were calculated with water as the solvent using the PCM method. To test the relationship between (3)J(CXCH) (X=C, O, S) and torsion angle C1-X (phi) around the anomeric center, the conformations of 24 derivatives of glucose and galactose, which represent sequences of atoms at the anomeric center of C-glycosides (C-C bond), O-glycosides (C-O bond), thioglycosides (C-S bond), glycosylamines (C-N bond), and glycosyl halides (C-halogen (F/Cl) bond) have been calculated. Nonlinear regression analysis of the coupling constants (1)J(C1,H1), (2)J(C5,H6R), (2)J(C5,H6S), (2)J(C6,H5), (3)J(C4,H6R), (3)J(C4,H6S), (2)J(H6R,H5), and (3)J(H5,H6R) as well as (3)J(CXCH) (X=C, O, S) on the dihedral angles omega, theta, and phi have yielded new Karplus equations. Good agreement between calculated and experimentally measured coupling constants revealed that the DFT method was able to accurately predict J-couplings in aqueous solutions.
通过一维和二维¹H-¹³C异核零量子和双量子相敏J-HMBC光谱,测量了D-葡萄糖和D-半乳糖的α-和β-吡喃糖苷甲基的(¹)H-(¹³)C耦合常数,以确定每种化合物环外羟甲基(CH₂OH)内的一组完整耦合常数((¹)J(CH)、(²)J(CH)、(³)J(CH)、(²)J(HH)和(³)J(HH))。与这些实验研究并行,使用6-311++G(**)基组,在B3LYP水平上通过量子力学计算确定了这些化合物羟甲基的结构、能量和势能面。使用PCM方法,以水为溶剂,计算了醛糖吡喃糖苷模型化合物中C5-C6(ω)和C6-O6(θ)扭转角中涉及¹H和¹³C的邻位耦合常数的值。为了测试(³)J(CXCH)(X = C、O、S)与异头中心周围扭转角C1-X(φ)之间的关系,计算了葡萄糖和半乳糖的24种衍生物的构象,这些衍生物代表了C-糖苷(CC键)、O-糖苷(CO键)、硫代糖苷(CS键)、糖基胺(CN键)和糖基卤化物(C-卤素(F/Cl)键)异头中心的原子序列。对耦合常数(¹)J(C1,H1)、(²)J(C5,H6R)、(²)J(C5,H6S)、(²)J(C6,H5)、(³)J(C4,H6R)、(³)J(C4,H6S)、(²)J(H6R,H5)和(³)J(H5,H6R)以及(³)J(CXCH)(X = C、O、S)在二面角ω、θ和φ上进行非线性回归分析,得出了新的Karplus方程。计算得到的耦合常数与实验测量值之间的良好一致性表明,DFT方法能够准确预测水溶液中的J耦合。