Jacobs Frank M J, Smits Simone M, Noorlander Cornelle W, von Oerthel Lars, van der Linden Annemarie J A, Burbach J Peter H, Smidt Marten P
Rudolf Magnus Institute of Neuroscience, Department of Pharmacology and Anatomy, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands.
Development. 2007 Jul;134(14):2673-84. doi: 10.1242/dev.02865.
Selective neuronal loss in the substantia nigra (SNc), as described for Parkinson's disease (PD) in humans and for Pitx3 deficiency in mice, highlights the existence of neuronal subpopulations. As yet unknown subset-specific gene cascades might underlie the observed differences in neuronal vulnerability. We identified a developmental cascade in mice in which Ahd2 (Aldh1a1) is under the transcriptional control of Pitx3. Interestingly, Ahd2 distribution is restricted to a subpopulation of the meso-diencephalic dopaminergic (mdDA) neurons that is affected by Pitx3 deficiency. Ahd2 is involved in the synthesis of retinoic acid (RA), which has a crucial role in neuronal patterning, differentiation and survival in the brain. Most intriguingly, restoring RA signaling in the embryonic mdDA area counteracts the developmental defects caused by Pitx3 deficiency. The number of tyrosine hydroxylase-positive (TH+) neurons was significantly increased after RA treatment in the rostral mdDA region of Pitx3-/- embryos. This effect was specific for the rostral part of the developing mdDA area, and was observed exclusively in Pitx3-/- embryos. The effect of RA treatment during the critical phase was preserved until later in development, and our data suggest that RA is required for the establishment of proper mdDA neuronal identity. This positions Pitx3 centrally in a mdDA developmental cascade linked to RA signaling. Here, we propose a novel mechanism in which RA is involved in mdDA neuronal development and maintenance, providing new insights into subset-specific vulnerability in PD.
如人类帕金森病(PD)和小鼠Pitx3缺乏症中所述,黑质致密部(SNc)出现选择性神经元丢失,这突出了神经元亚群的存在。目前尚不清楚的特定亚群基因级联反应可能是观察到的神经元易损性差异的基础。我们在小鼠中发现了一个发育级联反应,其中Ahd2(Aldh1a1)受Pitx3的转录控制。有趣的是,Ahd2的分布仅限于中脑-间脑多巴胺能(mdDA)神经元的一个亚群,该亚群会受到Pitx3缺乏症的影响。Ahd2参与视黄酸(RA)的合成,而RA在大脑神经元模式形成、分化和存活中起关键作用。最引人注目的是,在胚胎mdDA区域恢复RA信号可抵消由Pitx3缺乏症引起的发育缺陷。在Pitx3基因敲除胚胎的吻侧mdDA区域,RA处理后酪氨酸羟化酶阳性(TH+)神经元的数量显著增加。这种效应在发育中的mdDA区域的吻侧部分具有特异性,并且仅在Pitx3基因敲除胚胎中观察到。关键期RA处理的效应在发育后期得以保留,我们的数据表明RA是建立适当的mdDA神经元特性所必需的。这使Pitx3处于与RA信号相关的mdDA发育级联反应的中心位置。在此,我们提出一种新机制,其中RA参与mdDA神经元的发育和维持,为PD中的亚群特异性易损性提供了新的见解。