Suppr超能文献

使用β微探针进行体内磁共振成像和放射性测量同步进行。

Simultaneous in vivo magnetic resonance imaging and radioactive measurements with the beta-MicroProbe.

作者信息

Desbrée A, Rbah L, Langlois J-B, Grenier D, Mastrippolito R, Pain F, Pinot L, Lanièce P, Zimmer L, Gurden H

机构信息

IRSN, BP 17, 92262, Fontenay aux roses, France.

出版信息

Eur J Nucl Med Mol Imaging. 2007 Nov;34(11):1868-72. doi: 10.1007/s00259-007-0475-5. Epub 2007 Jun 27.

Abstract

PURPOSE

Multimodal instrumentation is a new technical approach allowing simultaneous and complementary in vivo recordings of complementary biological parameters. To elucidate further the physiopathological mechanisms in intact small animal models, especially for brain studies, a challenging issue is the actual coupling of magnetic resonance imaging (MRI) techniques with positron emission tomography (PET): it has been shown that running the technology for radioactive imaging in a magnet alters the spatiotemporal performance of both modalities. Thus, we propose an alternative coupling of techniques that uses the beta-MicroProbe instead of PET for local measurements of radioactivity coupled with MRI.

METHODS

We simultaneously recorded local radioactivity due to [(18)F]MPPF (a 5-HT(1A) receptor PET radiotracer) binding in the hippocampus with the beta-MicroProbe and carried out anatomical MRI in the same anaesthetised rat.

RESULTS

The comparison of [(18)F]MPPF kinetics obtained from animals in a magnet with kinetics from a control group outside the magnet allowed us to determine the stability of tracer biokinetic measurements over time in the magnet. We were thus able to show that the beta-MicroProbe reliably measures radioactivity in rat brains under an intense magnetic field of 7 Tesla.

CONCLUSION

The biological validation of a beta-MicroProbe/MRI dual system reported here opens up a wide range of future multimodal approaches for functional and pharmacological measurements by the probe combined with various magnetic resonance technologies, including anatomical MRI, functional MRI and MR spectroscopy.

摘要

目的

多模态仪器是一种新的技术方法,可同时对互补的生物学参数进行体内记录并相互补充。为了进一步阐明完整小动物模型中的生理病理机制,特别是对于脑部研究,一个具有挑战性的问题是磁共振成像(MRI)技术与正电子发射断层扫描(PET)的实际结合:已表明在磁体中运行放射性成像技术会改变这两种模态的时空性能。因此,我们提出了一种技术的替代结合方式,即使用β-微探针代替PET来进行与MRI相结合的局部放射性测量。

方法

我们使用β-微探针同时记录了麻醉大鼠海马体中因[(18)F]MPPF(一种5-HT(1A)受体PET放射性示踪剂)结合而产生的局部放射性,并进行了解剖学MRI。

结果

将磁体中的动物获得的[(18)F]MPPF动力学与磁体外部对照组的动力学进行比较,使我们能够确定示踪剂生物动力学测量在磁体中随时间的稳定性。因此,我们能够证明β-微探针在7特斯拉的强磁场下能够可靠地测量大鼠脑中的放射性。

结论

本文报道的β-微探针/MRI双系统的生物学验证为通过该探针结合各种磁共振技术(包括解剖学MRI、功能MRI和磁共振波谱)进行功能和药理学测量开辟了广泛的未来多模态方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验