Suppr超能文献

Multi-class subcellular location prediction for bacterial proteins.

作者信息

Taylor Paul D, Attwood Teresa K, Flower Darren R

机构信息

The Jenner Institute, University of Oxford, Compton,Newbury, Berkshire, RG20 7NN, UK.

出版信息

Bioinformation. 2006 Nov 24;1(7):260-4. doi: 10.6026/97320630001260.

Abstract

Two algorithms, based onBayesian Networks (BNs), for bacterial subcellular location prediction, are explored in this paper: one predicts all locations for Gram+ bacteria and the other all locations for Gram- bacteria. Methods were evaluated using different numbers of residues (from the N-terminal 10 residues to the whole sequence) and residue representation (amino acid-composition, percentage amino acid-composition or normalised amino acid-composition). The accuracy of the best resulting BN was compared to PSORTB. The accuracy of this multi-location BN was roughly comparable to PSORTB; the difference in predictions is low, often less than 2%. The BN method thus represents both an important new avenue of methodological development for subcellular location prediction and a potentially value new tool of true utilitarian value for candidate subunit vaccine selection.

摘要

相似文献

1
Multi-class subcellular location prediction for bacterial proteins.
Bioinformation. 2006 Nov 24;1(7):260-4. doi: 10.6026/97320630001260.
3
A novel approach for protein subcellular location prediction using amino acid exposure.
BMC Bioinformatics. 2013 Nov 28;14:342. doi: 10.1186/1471-2105-14-342.
4
Multi-location gram-positive and gram-negative bacterial protein subcellular localization using gene ontology and multi-label classifier ensemble.
BMC Bioinformatics. 2015;16 Suppl 12(Suppl 12):S1. doi: 10.1186/1471-2105-16-S12-S1. Epub 2015 Aug 25.
5
PSORTb v.2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis.
Bioinformatics. 2005 Mar 1;21(5):617-23. doi: 10.1093/bioinformatics/bti057. Epub 2004 Oct 22.
6
LocateP: genome-scale subcellular-location predictor for bacterial proteins.
BMC Bioinformatics. 2008 Mar 27;9:173. doi: 10.1186/1471-2105-9-173.
9
Predicting Gram-Positive Bacterial Protein Subcellular Location by Using Combined Features.
Biomed Res Int. 2020 Aug 2;2020:9701734. doi: 10.1155/2020/9701734. eCollection 2020.
10
Large-scale predictions of gram-negative bacterial protein subcellular locations.
J Proteome Res. 2006 Dec;5(12):3420-8. doi: 10.1021/pr060404b.

引用本文的文献

1
Computer aided selection of candidate vaccine antigens.
Immunome Res. 2010 Nov 3;6 Suppl 2(Suppl 2):S1. doi: 10.1186/1745-7580-6-S2-S1.

本文引用的文献

1
ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins.
Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W362-5. doi: 10.1093/nar/gkl124.
2
PSORTb v.2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis.
Bioinformatics. 2005 Mar 1;21(5):617-23. doi: 10.1093/bioinformatics/bti057. Epub 2004 Oct 22.
3
Multiple sequence alignment with the Clustal series of programs.
Nucleic Acids Res. 2003 Jul 1;31(13):3497-500. doi: 10.1093/nar/gkg500.
4
The HMMTOP transmembrane topology prediction server.
Bioinformatics. 2001 Sep;17(9):849-50. doi: 10.1093/bioinformatics/17.9.849.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验