Suppr超能文献

用于微阵列基因表达数据统计分析的错误发现率范式。

False discovery rate paradigms for statistical analyses of microarray gene expression data.

作者信息

Cheng Cheng, Pounds Stan

机构信息

Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA.

出版信息

Bioinformation. 2007 Apr 10;1(10):436-46. doi: 10.6026/97320630001436.

Abstract

The microarray gene expression applications have greatly stimulated the statistical research on the massive multiple hypothesis tests problem. There is now a large body of literature in this area and basically five paradigms of massive multiple tests: control of the false discovery rate (FDR), estimation of FDR, significance threshold criteria, control of family-wise error rate (FWER) or generalized FWER (gFWER), and empirical Bayes approaches. This paper contains a technical survey of the developments of the FDR-related paradigms, emphasizing precise formulation of the problem, concepts of error measurements, and considerations in applications. The goal is not to do an exhaustive literature survey, but rather to review the current state of the field.

摘要

微阵列基因表达应用极大地推动了关于大规模多重假设检验问题的统计研究。目前该领域有大量文献,并且大规模多重检验基本上有五种范式:错误发现率(FDR)控制、FDR估计、显著性阈值标准、族系错误率(FWER)或广义FWER(gFWER)控制以及经验贝叶斯方法。本文对与FDR相关的范式发展进行了技术综述,重点强调问题的精确表述、误差度量概念以及应用中的考虑因素。目的不是进行详尽的文献综述,而是回顾该领域的当前状态。

相似文献

1
False discovery rate paradigms for statistical analyses of microarray gene expression data.
Bioinformation. 2007 Apr 10;1(10):436-46. doi: 10.6026/97320630001436.
3
Controlling the false discovery rate with constraints: the Newman-Keuls test revisited.
Biom J. 2007 Feb;49(1):136-43. doi: 10.1002/bimj.200610297.
4
Statistical significance threshold criteria for analysis of microarray gene expression data.
Stat Appl Genet Mol Biol. 2004;3:Article36. doi: 10.2202/1544-6115.1064. Epub 2004 Dec 19.
7
Classes of Multiple Decision Functions Strongly Controlling FWER and FDR.
Metrika. 2015 Jul 1;78(5):563-595. doi: 10.1007/s00184-014-0516-6.
8
Power and type I error rate of false discovery rate approaches in genome-wide association studies.
BMC Genet. 2005 Dec 30;6 Suppl 1(Suppl 1):S134. doi: 10.1186/1471-2156-6-S1-S134.
10
Empirical Bayes screening of many p-values with applications to microarray studies.
Bioinformatics. 2005 May 1;21(9):1987-94. doi: 10.1093/bioinformatics/bti301. Epub 2005 Feb 2.

引用本文的文献

1
Transcriptomic Analysis of Alzheimer's Disease Pathways in a Pakistani Population.
J Alzheimers Dis Rep. 2024 Mar 19;8(1):479-493. doi: 10.3233/ADR-230146. eCollection 2024.
2
Over-expression of mir-181a-3p in serum of breast cancer patients as diagnostic biomarker.
Mol Biol Rep. 2024 Feb 27;51(1):372. doi: 10.1007/s11033-024-09272-4.
3
Metabolomic changes in cats with renal disease and calcium oxalate uroliths.
Metabolomics. 2022 Aug 13;18(8):68. doi: 10.1007/s11306-022-01925-4.
4
Early Imaging and Molecular Changes with Neoadjuvant Bevacizumab in Stage II/III Breast Cancer.
Cancers (Basel). 2021 Jul 14;13(14):3511. doi: 10.3390/cancers13143511.
5
Molecular Regulation of the Melatonin Biosynthesis Pathway in Unipolar and Bipolar Depression.
Front Pharmacol. 2021 Apr 26;12:666541. doi: 10.3389/fphar.2021.666541. eCollection 2021.
6
Gene-set distance analysis (GSDA): a powerful tool for gene-set association analysis.
BMC Bioinformatics. 2021 Apr 21;22(1):207. doi: 10.1186/s12859-021-04110-x.
8
Optimal alpha reduces error rates in gene expression studies: a meta-analysis approach.
BMC Bioinformatics. 2017 Jun 21;18(1):312. doi: 10.1186/s12859-017-1728-3.
9
A modified generalized Fisher method for combining probabilities from dependent tests.
Front Genet. 2014 Feb 20;5:32. doi: 10.3389/fgene.2014.00032. eCollection 2014.
10
A glance at DNA microarray technology and applications.
Bioimpacts. 2011;1(2):75-86. doi: 10.5681/bi.2011.011. Epub 2011 Aug 4.

本文引用的文献

1
Robust estimation of the false discovery rate.
Bioinformatics. 2006 Aug 15;22(16):1979-87. doi: 10.1093/bioinformatics/btl328. Epub 2006 Jun 15.
2
Estimation and control of multiple testing error rates for microarray studies.
Brief Bioinform. 2006 Mar;7(1):25-36. doi: 10.1093/bib/bbk002.
3
Treating expression levels of different genes as a sample in microarray data analysis: is it worth a risk?
Stat Appl Genet Mol Biol. 2006;5:Article9. doi: 10.2202/1544-6115.1185. Epub 2006 Mar 24.
4
Statistical significance threshold criteria for analysis of microarray gene expression data.
Stat Appl Genet Mol Biol. 2004;3:Article36. doi: 10.2202/1544-6115.1064. Epub 2004 Dec 19.
5
Deletion/substitution/addition algorithm in learning with applications in genomics.
Stat Appl Genet Mol Biol. 2004;3:Article18. doi: 10.2202/1544-6115.1069. Epub 2004 Aug 12.
6
7
Sample size determination for the false discovery rate.
Bioinformatics. 2005 Dec 1;21(23):4263-71. doi: 10.1093/bioinformatics/bti699. Epub 2005 Oct 4.
8
Roadmap for developing and validating therapeutically relevant genomic classifiers.
J Clin Oncol. 2005 Oct 10;23(29):7332-41. doi: 10.1200/JCO.2005.02.8712. Epub 2005 Sep 6.
9
The effects of normalization on the correlation structure of microarray data.
BMC Bioinformatics. 2005 May 16;6:120. doi: 10.1186/1471-2105-6-120.
10
Statistical development and evaluation of microarray gene expression data filters.
J Comput Biol. 2005 May;12(4):482-95. doi: 10.1089/cmb.2005.12.482.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验