Milić Jelena, Seidel Ralf, Becker Christian F W, Goody Roger S, Engelhard Martin
Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
Biopolymers. 2008;90(3):399-405. doi: 10.1002/bip.20797.
The mechanism of the guanosine triphosphate (GTP) hydrolysis reaction of small G-proteins such as Ras is generally understood; however, some important molecular details are still missing. One example concerns the role of Gln61 in the catalysis of the GTP hydrolysis reaction. This amino acid is frequently mutated in oncogenic Ras leading to constitutively active variants of the protein. To elucidate the role of Gln61, subtle structural changes were introduced at this position by exchanging the natural occurring glutamine against a glutamic acid methyl ester (GluOme). Thereby the H-bond donor properties of this residue are changed and analysis of the GTP hydrolysis reaction can provide information on the function of the native carboxamide moiety. Using a semisynthetic approach, Ras(1-166)Gln61GluOMe was synthesized by sequential native chemical ligation of three unprotected peptide segments. Peptides Ras(1-50) and Ras(51-79)Gln61GluOMe were synthesized using Boc chemistry. The C-terminal peptide Ras(80-166) was expressed in E. coli. Initial tests of this semisynthetic strategy were performed by synthesis of the N- and C-terminally truncated protein variant Ras(39-101)Gln61GluOMe. The identified optimal reaction conditions were then applied to the synthesis of Ras(1-166)Gln61GluOMe. Refolding of the semisynthetic product in the presence of GTP was successful and revealed intrinsic GTPase activity of Ras(1-166)Gln61GluOMe.
诸如Ras等小G蛋白的鸟苷三磷酸(GTP)水解反应机制已基本为人所知;然而,一些重要的分子细节仍不清楚。一个例子涉及Gln61在GTP水解反应催化中的作用。这种氨基酸在致癌性Ras中经常发生突变,导致该蛋白产生组成型活性变体。为了阐明Gln61的作用,通过将天然存在的谷氨酰胺替换为谷氨酸甲酯(GluOme),在该位置引入了细微的结构变化。由此改变了该残基的氢键供体性质,对GTP水解反应的分析可以提供有关天然羧酰胺部分功能的信息。采用半合成方法,通过三个未保护肽段的顺序天然化学连接合成了Ras(1-166)Gln61GluOMe。肽段Ras(1-50)和Ras(51-79)Gln61GluOMe采用Boc化学法合成。C末端肽段Ras(80-166)在大肠杆菌中表达。通过合成N末端和C末端截短的蛋白变体Ras(39-101)Gln61GluOMe对这种半合成策略进行了初步测试。然后将确定的最佳反应条件应用于Ras(1-166)Gln61GluOMe的合成。在GTP存在下,半合成产物的重折叠成功,并揭示了Ras(1-166)Gln61GluOMe的内在GTP酶活性。