Saadi Kamel, Talbot Nicola L C, Cawley Gavin C
School of Computing Sciences, University of East Anglia, Norwich, Norfolk, UK.
Neural Netw. 2007 Sep;20(7):832-41. doi: 10.1016/j.neunet.2007.05.005. Epub 2007 Jun 2.
Mika, Rätsch, Weston, Schölkopf and Müller [Mika, S., Rätsch, G., Weston, J., Schölkopf, B., & Müller, K.-R. (1999). Fisher discriminant analysis with kernels. In Neural networks for signal processing: Vol. IX (pp. 41-48). New York: IEEE Press] introduce a non-linear formulation of Fisher's linear discriminant, based on the now familiar "kernel trick", demonstrating state-of-the-art performance on a wide range of real-world benchmark datasets. In this paper, we extend an existing analytical expression for the leave-one-out cross-validation error [Cawley, G. C., & Talbot, N. L. C. (2003b). Efficient leave-one-out cross-validation of kernel Fisher discriminant classifiers. Pattern Recognition, 36(11), 2585-2592] such that the leave-one-out error can be re-estimated following a change in the value of the regularisation parameter with a computational complexity of only O(l(2)) operations, which is substantially less than the O(l(3)) operations required for the basic training algorithm. This allows the regularisation parameter to be tuned at an essentially negligible computational cost. This is achieved by performing the discriminant analysis in canonical form. The proposed method is therefore a useful component of a model selection strategy for this class of kernel machines that alternates between updates of the kernel and regularisation parameters. Results obtained on real-world and synthetic benchmark datasets indicate that the proposed method is competitive with model selection based on k-fold cross-validation in terms of generalisation, whilst being considerably faster.
米卡、拉奇、韦斯顿、施尔科普夫和米勒[米卡,S.,拉奇,G.,韦斯顿,J.,施尔科普夫,B.,&米勒,K.-R.(1999年)。带核的费舍尔判别分析。见《用于信号处理的神经网络:第九卷》(第41 - 48页)。纽约:电气与电子工程师协会出版社]基于现已广为人知的“核技巧”引入了费舍尔线性判别的非线性公式,在广泛的真实世界基准数据集上展示了领先的性能。在本文中,我们扩展了留一法交叉验证误差的现有解析表达式[考利,G. C.,&塔尔博特,N. L. C.(2003年b)。核费舍尔判别分类器的高效留一法交叉验证。《模式识别》,36(11),2585 - 2592],使得在正则化参数值发生变化后,可以重新估计留一法误差,其计算复杂度仅为O(l(2))次运算,这大大低于基本训练算法所需的O(l(3))次运算。这使得能够以基本可忽略的计算成本调整正则化参数。这是通过以规范形式进行判别分析来实现的。因此,所提出的方法是这类核机器模型选择策略的一个有用组成部分,该策略在内核和正则化参数更新之间交替进行。在真实世界和合成基准数据集上获得的结果表明,所提出的方法在泛化能力方面与基于k折交叉验证的模型选择具有竞争力,同时速度要快得多。