Suppr超能文献

Cell-cycle associated transcriptional regulation of ribonucleotide reductase in L1210 leukemia cells and drug-resistant variants.

作者信息

Johnson C E, Hughes K, Cory J G

机构信息

Department of Internal Medicine, University of South Florida College of Medicine, Tampa.

出版信息

Cancer Commun. 1991;3(10-11):341-9. doi: 10.3727/095535491820873777.

Abstract

Previous studies from this laboratory have shown that the steady-state levels of the mRNA for the non-heme iron (NHI) subunit of ribonucleotide reductase were markedly elevated in hydroxyurea-resistant L1210 cell lines with minimal changes in the mRNA levels for the effector-binding (EB) subunit. In the present study, wild-type L1210 cells and their drug-resistant variants [hydroxyurea-resistant (HU-7); deoxyadenosine-resistant (Y-8); and deoxyadenosine/pyrazoloimidazole-resistant (ED2)] were synchronized by EGTA treatment in the G0/G1-phase of the cell cycle. Upon the addition of CaCl2, the cells reentered the cell cycle. The steady-state levels and the transcriptional rates of the mRNAs for the EB subunit and glyceraldehyde-3-phosphate dehydrogenase were measured and found to be similar in the drug-resistant variants compared to the wild-type cells. While the steady-state level of the mRNA for the NHI subunit was increased 35-fold in the HU-7 cell line, the transcription rate was increased only 7-fold. The increase in the transcription rate did not account for the large increase in the steady-state level. These data indicate that the increased steady-state level of the mRNA for the NHI subunit in the HU-7 L1210 cell line was not due to cell-cycle differences and that post-transcriptional processing and/or stability may play a role as well.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验