Banerjee Sulagna, Vishwanath Prashanth, Cui Jike, Kelleher Daniel J, Gilmore Reid, Robbins Phillips W, Samuelson John
Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, MA 02118, USA.
Proc Natl Acad Sci U S A. 2007 Jul 10;104(28):11676-81. doi: 10.1073/pnas.0704862104. Epub 2007 Jul 2.
Asn-linked glycans (N-glycans) play important roles in the quality control (QC) of glycoprotein folding in the endoplasmic reticulum (ER) lumen and in ER-associated degradation (ERAD) of proteins by cytosolic proteasomes. A UDP-Glc:glycoprotein glucosyltransferase glucosylates N-glycans of misfolded proteins, which are then bound and refolded by calreticulin and/or calnexin in association with a protein disulfide isomerase. Alternatively, an alpha-1,2-mannosidase (Mns1) and mannosidase-like proteins (ER degradation-enhancing alpha-mannosidase-like proteins 1, 2, and 3) are part of a process that results in the dislocation of misfolded glycoproteins into the cytosol, where proteins are degraded in the proteasome. Recently we found that numerous protists and fungi contain 0-11 sugars in their N-glycan precursors versus 14 sugars in those of animals, plants, fungi, and Dictyostelium. Our goal here was to determine what effect N-glycan precursor diversity has on N-glycan-dependent QC systems of glycoprotein folding and ERAD. N-glycan-dependent QC of folding (UDP-Glc:glycoprotein glucosyltransferase, calreticulin, and/or calnexin) was present and active in some but not all protists containing at least five mannose residues in their N-glycans and was absent in protists lacking Man. In contrast, N-glycan-dependent ERAD appeared to be absent from the majority of protists. However, Trypanosoma and Trichomonas genomes predicted ER degradation-enhancing alpha-mannosidase-like protein and Mns1 orthologs, respectively, each of which had alpha-mannosidase activity in vitro. Phylogenetic analyses suggested that the diversity of N-glycan-dependent QC of glycoprotein folding (and possibly that of ERAD) was best explained by secondary loss. We conclude that N-glycan precursor length has profound effects on N-glycan-dependent QC of glycoprotein folding and ERAD.
天冬酰胺连接的聚糖(N-聚糖)在内质网(ER)腔中糖蛋白折叠的质量控制(QC)以及胞质蛋白酶体对蛋白质的内质网相关降解(ERAD)过程中发挥着重要作用。一种UDP-葡萄糖:糖蛋白葡糖基转移酶会将错误折叠蛋白质的N-聚糖进行葡糖基化,随后这些聚糖会与蛋白质二硫键异构酶一起,被钙网蛋白和/或钙连蛋白结合并重新折叠。另外,一种α-1,2-甘露糖苷酶(Mns1)和甘露糖苷酶样蛋白(内质网降解增强型α-甘露糖苷酶样蛋白1、2和3)参与了一个过程,该过程会导致错误折叠的糖蛋白错位进入胞质溶胶,在那里蛋白质会被蛋白酶体降解。最近我们发现,许多原生生物和真菌的N-聚糖前体含有0至11个糖,而动物、植物、真菌和盘基网柄菌的N-聚糖前体含有14个糖。我们在此的目标是确定N-聚糖前体多样性对糖蛋白折叠和ERAD的N-聚糖依赖性质量控制系统有何影响。在一些但并非所有N-聚糖中至少含有五个甘露糖残基的原生生物中,存在并活跃着N-聚糖依赖性的折叠质量控制(UDP-葡萄糖:糖蛋白葡糖基转移酶、钙网蛋白和/或钙连蛋白),而在缺乏甘露糖的原生生物中则不存在。相比之下,大多数原生生物似乎不存在N-聚糖依赖性ERAD。然而,锥虫和滴虫的基因组分别预测有内质网降解增强型α-甘露糖苷酶样蛋白和Mns1直系同源物,它们在体外均具有α-甘露糖苷酶活性。系统发育分析表明,糖蛋白折叠的N-聚糖依赖性质量控制(可能还有ERAD的质量控制)的多样性最好用次生损失来解释。我们得出结论,N-聚糖前体长度对糖蛋白折叠和ERAD的N-聚糖依赖性质量控制有深远影响。