Ermonval M, Kitzmüller C, Mir A M, Cacan R, Ivessa N E
URA CNRS 1960, Département d'Immunologie Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France.
Glycobiology. 2001 Jul;11(7):565-76. doi: 10.1093/glycob/11.7.565.
A soluble form of ribophorin I (RI(332)) is rapidly degraded in Hela and Chinese hamster ovary (CHO) cells by a cytosolic proteasomal pathway, and the N-linked glycan present on the protein may play an important role in this process. Specifically, it has been suggested that endoplasmic reticulum (ER) mannosidase I could trigger the targeting of improperly folded glycoproteins to degradation. We used a CHO-derived glycosylation-defective cell line, MadIA214, for investigating the role of mannosidase(s) as a signal for glycoprotein degradation. Glycoproteins in MadIA214 cells carry truncated Glc(1)Man(5)GlcNAc(2) N-glycans. This oligomannoside structure interferes with protein maturation and folding, leading to an alteration of the ER morphology and the detection of high levels of soluble oligomannoside species caused by glycoprotein degradation. An HA-epitope-tagged soluble variant of ribophorin I (RI(332)-3HA) expressed in MadIA214 cells was rapidly degraded, comparable to control cells with the complete Glc(3)Man(9)GlcNAc(2) N-glycan. ER-associated degradation (ERAD) of RI(332)-3HA was also proteasome-mediated in MadIA214 cells, as demonstrated by inhibition of RI(332)-3HA degradation with agents specifically blocking proteasomal activities. Two inhibitors of alpha1,2-mannosidase activity also stabilized RI(332)-3HA in the glycosylation-defective cell line. This is striking, because the major mannosidase activity in the ER is the one of mannosidase I, specific for a mannose alpha1,2-linkage that is absent from the truncated Man(5) structure. Interestingly, though the Man(5) derivative was present in large amounts in the total protein pool, the two major species linked to RI(332)-3HA shortly after synthesis consisted of Glc(1)Man(5 )and Man(4), being replaced by Man(4 )and Man(3) when proteasomal degradation was inhibited. In contrast, the untrimmed intermediate of RI(332)-3HA was detected in mutant cells treated with mannosidase inhibitors. Our results unambiguously demonstrate that an alpha1,2-mannosidase that is not ER mannosidase I is involved in ERAD of RI(332-)3HA in the glycosylation-defective cell line, MadIA214.
一种可溶性形式的核糖体结合蛋白I(RI(332))在Hela细胞和中国仓鼠卵巢(CHO)细胞中通过胞质蛋白酶体途径迅速降解,并且该蛋白上存在的N-连接聚糖可能在这一过程中发挥重要作用。具体而言,有人提出内质网(ER)甘露糖苷酶I可能触发错误折叠的糖蛋白被靶向降解。我们使用一种源自CHO的糖基化缺陷细胞系MadIA214,来研究甘露糖苷酶作为糖蛋白降解信号的作用。MadIA214细胞中的糖蛋白携带截短的Glc(1)Man(5)GlcNAc(2) N-聚糖。这种寡甘露糖苷结构会干扰蛋白质的成熟和折叠,导致内质网形态改变,并检测到由糖蛋白降解引起的高水平可溶性寡甘露糖苷种类。在MadIA214细胞中表达的带有HA表位标签的核糖体结合蛋白I可溶性变体(RI(332)-3HA)迅速降解,与具有完整Glc(3)Man(9)GlcNAc(2) N-聚糖的对照细胞相当。在MadIA214细胞中,RI(332)-3HA的内质网相关降解(ERAD)也是由蛋白酶体介导的,这通过用特异性阻断蛋白酶体活性的试剂抑制RI(332)-3HA降解得以证明。两种α1,2-甘露糖苷酶活性抑制剂也使糖基化缺陷细胞系中的RI(332)-3HA稳定。这很引人注目,因为内质网中的主要甘露糖苷酶活性是甘露糖苷酶I的活性,它对截短的Man(5)结构中不存在的甘露糖α1,2-连接具有特异性。有趣的是,尽管Man(5)衍生物在总蛋白池中大量存在,但合成后不久与RI(332)-3HA相连的两种主要种类由Glc(1)Man( )和Man(4)组成,当蛋白酶体降解被抑制时被Man(4)和Man(3)取代。相比之下,在用甘露糖苷酶抑制剂处理的突变细胞中检测到了RI(332)-3HA未修剪的中间体。我们的结果明确表明,一种不是内质网甘露糖苷酶I的α1,2-甘露糖苷酶参与了糖基化缺陷细胞系MadIA214中RI(332-)3HA的ERAD。