Wodrich Matthew D, Wannere Chaitanya S, Mo Yirong, Jarowski Peter D, Houk Kendall N, Schleyer Paul von Ragué
Department of Chemistry and Center for Computational Chemistry, University of Georgia, Athens, GA 30602, USA.
Chemistry. 2007;13(27):7731-44. doi: 10.1002/chem.200700602.
Branched alkanes like isobutane and neopentane are more stable than their straight chain isomers, n-butane and n-pentane (by 2 and 5 kcal mol(-1), respectively). Electron correlation is largely responsible. Branched alkanes have a greater number of net attractive 1,3-alkyl-alkyl group interactions, there are three such stabilizing 1,3 "protobranching" dispositions in isobutane, but only two in n-butane. Neopentane has six protobranches but n-pentane only three. Propane has one protobranch and is stabilized appreciably, by 2.8 kcal mol(-1), relative to methane and ethane. This value per protobranch also applies to the n-alkanes and cyclohexane. Consequently, energy evaluations employing alkane reference standards, for example, of small ring strain and stabilizations due to conjugation, hyperconjugation, and aromaticity, should be corrected for protobranching, for example, by employing Pople's isodesmic bond separation reaction method. This reduces the ring strain of cyclopropane to 19.2 from the conventional 27.7 kcal mol(-1), while the stabilization energies of alkenes and alkynes due to hyperconjugation (5.5 and 7.7 kcal mol(-1) for propene and propyne) and conjugation (14.8 and 27.1 kcal mol(-1) for butadiene and butadiyne) are considerably larger than the traditional estimates. Widely diverging literature evaluations of benzene resonance energy all give approximately 65 kcal mol(-1) after adjusting for conjugation, hyperconjugation, and protobranching "contaminations." The BLW (block localized wavefunction) method, which localizes pi bonds and precludes their interactions, largely confirms these stabilization estimates for hyperconjugation, conjugation, and aromaticity. Protobranching is seriously underestimated by theoretical computations at the HF and most DFT levels, which do not account for electron correlation satisfactorily. Such levels give bond separation energies, which can differ greatly from experimental values.
像异丁烷和新戊烷这样的支链烷烃比它们的直链异构体正丁烷和正戊烷更稳定(分别稳定2千卡/摩尔和5千卡/摩尔)。电子相关作用在很大程度上起了作用。支链烷烃有更多的净吸引性1,3 - 烷基 - 烷基相互作用,异丁烷中有三个这样稳定的1,3 “原分支” 排列,但正丁烷中只有两个。新戊烷有六个原分支,而正戊烷只有三个。丙烷有一个原分支,相对于甲烷和乙烷明显稳定,稳定2.8千卡/摩尔。每个原分支的这个值也适用于正构烷烃和环己烷。因此,例如,对于小环应变以及由于共轭、超共轭和芳香性引起的稳定化作用,采用烷烃参考标准进行的能量评估应该针对原分支进行校正,例如通过采用波普尔的等键分离反应方法。这将环丙烷的环应变从传统的27.7千卡/摩尔降低到19.2千卡/摩尔,而由于超共轭(丙烯和丙炔分别为5.5千卡/摩尔和7.7千卡/摩尔)和共轭(丁二烯和丁二炔分别为14.8千卡/摩尔和27.1千卡/摩尔)导致的烯烃和炔烃的稳定化能量比传统估计值大得多。在对共轭、超共轭和原分支 “污染” 进行校正后,关于苯共振能的广泛不同的文献评估都给出了大约65千卡/摩尔的值。BLW(块定域波函数)方法,它使π键定域并排除它们的相互作用,在很大程度上证实了这些关于超共轭共轭和芳香性的稳定化估计。在HF和大多数DFT水平的理论计算严重低估了原分支,这些计算不能令人满意地考虑电子相关作用。这些水平给出的键分离能可能与实验值有很大差异。