de Boer Johannes W, Browne Wesley R, Brinksma Jelle, Alsters Paul L, Hage Ronald, Feringa Ben L
Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen, The Netherlands.
Inorg Chem. 2007 Aug 6;46(16):6353-72. doi: 10.1021/ic7003613. Epub 2007 Jul 3.
In the presence of carboxylic acids the complex [Mn(IV)2(micro-O)3(tmtacn)2]2+ (1, where tmtacn = N,N',N''-trimethyl-1,4,7-triazacyclononane) is shown to be highly efficient in catalyzing the oxidation of alkenes to the corresponding cis-diol and epoxide with H2O2 as terminal oxidant. The selectivity of the catalytic system with respect to (w.r.t.) either cis-dihydroxylation or epoxidation of alkenes is shown to be dependent on the carboxylic acid employed. High turnover numbers (t.o.n. > 2000) can be achieved especially w.r.t. cis-dihydroxylation for which the use of 2,6-dichlorobenzoic acid allows for the highest t.o.n. reported thus far for cis-dihydroxylation of alkenes catalyzed by a first-row transition metal and high efficiency w.r.t. the terminal oxidant (H2O2). The high activity and selectivity is due to the in situ formation of bis(micro-carboxylato)-bridged dinuclear manganese(III) complexes. Tuning of the activity of the catalyst by variation in the carboxylate ligands is dependent on both the electron-withdrawing nature of the ligand and on steric effects. By contrast, the cis-diol/epoxide selectivity is dominated by steric factors. The role of solvent, catalyst oxidation state, H2O, and carboxylic acid concentration and the nature of the carboxylic acid employed on both the activity and the selectivity of the catalysis are explored together with speciation analysis and isotope labeling studies. The results confirm that the complexes of the type [Mn2(micro-O)(micro-R-CO2)2(tmtacn)2]2+, which show remarkable redox and solvent-dependent coordination chemistry, are the resting state of the catalytic system and that they retain a dinuclear structure throughout the catalytic cycle. The mechanistic understanding obtained from these studies holds considerable implications for both homogeneous manganese oxidation catalysis and in understanding related biological systems such as dinuclear catalase and arginase enzymes.
在羧酸存在下,配合物[Mn(IV)₂(μ-O)₃(tmtacn)₂]²⁺(1,其中tmtacn = N,N',N''-三甲基-1,4,7-三氮杂环壬烷)被证明在以H₂O₂作为终端氧化剂将烯烃氧化为相应的顺式二醇和环氧化物的反应中具有高效催化作用。该催化体系对烯烃顺式二羟基化或环氧化的选择性取决于所使用的羧酸。特别是对于顺式二羟基化反应,可以实现高周转数(t.o.n. > 2000),其中使用2,6-二氯苯甲酸可实现迄今为止报道的由第一行过渡金属催化烯烃顺式二羟基化反应的最高周转数,并且对终端氧化剂(H₂O₂)具有高效率。高活性和选择性归因于原位形成的双(μ-羧基)桥连双核锰(III)配合物。通过改变羧酸盐配体来调节催化剂的活性取决于配体的吸电子性质和空间效应。相比之下,顺式二醇/环氧化物的选择性主要由空间因素决定。研究了溶剂、催化剂氧化态、H₂O、羧酸浓度以及所使用羧酸的性质对催化活性和选择性的作用,同时进行了物种分析和同位素标记研究。结果证实,[Mn₂(μ-O)(μ-R-CO₂)₂(tmtacn)₂]²⁺类型的配合物具有显著的氧化还原和溶剂依赖性配位化学性质,是催化体系的静止状态,并且它们在整个催化循环中保持双核结构。从这些研究中获得的机理理解对于均相锰氧化催化以及理解相关生物体系如双核过氧化氢酶和精氨酸酶具有重要意义。