Escartin Carole, Pierre Karin, Colin Angélique, Brouillet Emmanuel, Delzescaux Thierry, Guillermier Martine, Dhenain Marc, Déglon Nicole, Hantraye Philippe, Pellerin Luc, Bonvento Gilles
Commissariat à l'Energie Atomique-Direction des Sciences du Vivant, Institut d'Imagerie Biomédicale, Service Hospitalier Frederic Joliot, Centre National de la Recherche Scientifique, Unité de Recherche Associée 2210, 91401 Orsay, France.
J Neurosci. 2007 Jul 4;27(27):7094-104. doi: 10.1523/JNEUROSCI.0174-07.2007.
High energy demands of neurons make them vulnerable to adverse effects of energy impairment. Recently, astrocytes were shown to regulate the flux of energy substrates to neurons. In pathological situations, astrocytes are activated but the consequences on brain energy metabolism are still poorly characterized. We found that local lentiviral-mediated gene transfer of ciliary neurotrophic factor (CNTF), a cytokine known to activate astrocytes, induced a stable decrease in the glycolytic flux in the rat striatum in vivo as measured by 2-[18F]-2-deoxy-D-glucose autoradiography and micro-positron emission tomography imaging. The activity of the mitochondrial complex IV enzyme cytochrome oxidase was not modified, suggesting maintenance of downstream oxidative steps of energy production. CNTF significantly increased the phosphorylation level of the intracellular energy sensor AMP-activated protein kinase (AMPK), supporting a specific reorganization of brain energy pathways. Indeed, we found that different key enzymes/transporters of fatty acids beta-oxidation and ketolysis were overexpressed by CNTF-activated astrocytes within the striatum. In primary striatal neuron/astrocyte mixed cultures exposed to CNTF, the AMPK pathway was also activated, and the rate of oxidation of fatty acids and ketone bodies was significantly enhanced. This metabolic plasticity conferred partial glial and neuronal protection against prolonged palmitate exposure and glycolysis inhibition. We conclude that CNTF-activated astrocytes may have a strong protective potential to face severe metabolic insults.
神经元对能量的高需求使其易受能量损伤的不利影响。最近研究表明,星形胶质细胞可调节能量底物向神经元的流动。在病理情况下,星形胶质细胞被激活,但对脑能量代谢的影响仍不清楚。我们发现,通过局部慢病毒介导的睫状神经营养因子(CNTF)基因转移(CNTF是一种已知可激活星形胶质细胞的细胞因子),在体内可使大鼠纹状体中的糖酵解通量稳定降低,这是通过2-[18F]-2-脱氧-D-葡萄糖放射自显影和微正电子发射断层扫描成像测量得出的。线粒体复合物IV酶细胞色素氧化酶的活性未改变,这表明能量产生的下游氧化步骤得以维持。CNTF显著提高了细胞内能量传感器AMP激活的蛋白激酶(AMPK)的磷酸化水平,支持了脑能量途径的特定重组。实际上,我们发现纹状体内CNTF激活的星形胶质细胞使脂肪酸β氧化和酮解的不同关键酶/转运体过表达。在暴露于CNTF的原代纹状体神经元/星形胶质细胞混合培养物中,AMPK途径也被激活,脂肪酸和酮体的氧化速率显著提高。这种代谢可塑性赋予了部分神经胶质和神经元保护作用,使其免受长时间棕榈酸暴露和糖酵解抑制的影响。我们得出结论,CNTF激活的星形胶质细胞可能具有强大的保护潜力,以应对严重的代谢损伤。