Suppr超能文献

氨基酸K边圆二色性的计算:随机相位近似与其他方法的比较。

Calculation of K-edge circular dichroism of amino acids: comparison of random phase approximation with other methods.

作者信息

Kimberg Victor, Kosugi Nobuhiro

机构信息

Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan.

出版信息

J Chem Phys. 2007 Jun 28;126(24):245101. doi: 10.1063/1.2743010.

Abstract

Soft x-ray natural circular dichroism of amino acids is studied by means of ab initio methods. Several approaches to evaluate the oscillator and rotary strengths of core-to-valence excitations are compared from the viewpoint of basis set dependence: ground-state Hartree-Fock (HF) orbital set employed in (i) random phase approximation (RPA), (ii) static exchange approach (STEX) (unrelaxed), (iii) core-ionized state HF orbital set applied in STEX (relaxed), and (iv) HF excited state orbital set for each core-to-valence excited state. Furthermore in (i) the PRA in the framework of the density functional method (DFT) is compared with the RPA where the ab initio HF orbital set is used. In (iv), the oscillator and rotary strengths evaluated by different orbital sets for the initial and final states, namely, nonorthogonal ground-state and core-excited HF orbitals, are compared with those evaluated by using the core-excited HF orbital set to describe the initial (ground) state. It was shown that, among considered methods, the RPA provides most consistent and less time-consuming results for circular dichroism core excitation spectra. Discussion of the low energy part of K edge circular dichroism spectra of five common amino acids obtained with the help of RPA is presented.

摘要

采用从头算方法研究了氨基酸的软X射线自然圆二色性。从基组依赖性的角度比较了几种评估芯到价激发的振子强度和旋光强度的方法:(i)随机相位近似(RPA)中使用的基态哈特里-福克(HF)轨道集,(ii)静态交换方法(STEX)(未松弛),(iii)应用于STEX(松弛)的芯电离态HF轨道集,以及(iv)每个芯到价激发态的HF激发态轨道集。此外,在(i)中,将密度泛函方法(DFT)框架下的PRA与使用从头算HF轨道集的RPA进行了比较。在(iv)中,比较了用不同轨道集评估的初始态和终态(即非正交基态和芯激发HF轨道)的振子强度和旋光强度与用芯激发HF轨道集描述初始(基)态时评估的结果。结果表明,在所考虑的方法中,RPA为圆二色性芯激发光谱提供了最一致且耗时较少的结果。给出了借助RPA获得的五种常见氨基酸K边圆二色性光谱低能部分的讨论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验