Suppr超能文献

Influence of ventrolateral surface of medulla on tracheal gland secretion.

作者信息

Haxhiu M A, Van Lunteren E, Cherniack N S

机构信息

Department of Medicine, University Hospitals of Cleveland, Case Western Reserve University, Ohio 44106.

出版信息

J Appl Physiol (1985). 1991 Nov;71(5):1663-8. doi: 10.1152/jappl.1991.71.5.1663.

Abstract

Airway secretion can be modified reflexly as well as locally. Previous studies indicate that neurons in a circumscribed region near the ventral surface of the medulla (VMS) can substantially modify airway tone and reflex responses to vagal inputs. In the present studies we assessed the importance of these neurons on tracheal gland secretion. We examined the changes in the number of hillocks of secretion appearing from submucosal glands in an exposed field of tracheal epithelium (1.2 cm2) coated with tantalum dust before and after interventions on the VMS. Experiments were performed in alpha-chloralose-anesthetized dogs paralyzed and ventilated with 40% O2. Stimulation of nicotinergic receptors by application of a pledget containing nicotine in 11 dogs caused a significant elevation in tracheal gland secretion in the subsequent 60 s, compared with a control period in which buffered saline was applied. Prior application of lidocaine or hexamethonium bromide to the VMS blocked the effect of topically applied nicotine. The central effects of nicotine were diminished by atropine methylnitrate given intravenously. In addition, lidocaine application to the VMS or focal cooling of intermediate areas to between 20 and 15 degrees C significantly decreased secretion rates reflexly produced by capsaicin-induced stimulation of pulmonary C-fiber receptors and by mechanical stimulation of the carina and larynx. These findings suggest that the ventral medulla contains cells near its surface that influence tracheal fluid secretion and modulate reflex responses of airway submucosal glands, probably by altering the level of general excitation within the central respiratory integrating circuits.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验