Penati Tiziano, Flach Sergej
Dipartimento di Matematica F. Enriques, Via Saldini 50, 20133 Milano, Italy.
Chaos. 2007 Jun;17(2):023102. doi: 10.1063/1.2645141.
Upon initial excitation of a few normal modes the energy distribution among all modes of a nonlinear atomic chain (the Fermi-Pasta-Ulam model) exhibits exponential localization on large time scales. At the same time, resonant anomalies (peaks) are observed in its weakly excited tail for long times preceding equipartition. We observe a similar resonant tail structure also for exact time-periodic Lyapunov orbits, coined q-breathers due to their exponential localization in modal space. We give a simple explanation for this structure in terms of superharmonic resonances. The resonance analysis agrees very well with numerical results and has predictive power. We extend a previously developed perturbation method, based essentially on a Poincare-Lindstedt scheme, in order to account for these resonances, and in order to treat more general model cases, including truncated Toda potentials. Our results give a qualitative and semiquantitative account for the superharmonic resonances of q-breathers and natural packets.
在对非线性原子链(费米 - 帕斯塔 - 乌拉姆模型)的一些正常模式进行初始激发时,在长时间尺度上,所有模式之间的能量分布呈现指数局域化。同时,在等能均分之前的很长时间里,在其弱激发尾部观察到共振异常(峰值)。对于精确的时间周期李雅普诺夫轨道,我们也观察到类似的共振尾部结构,由于它们在模态空间中的指数局域化而被称为q呼吸子。我们用超谐波共振对这种结构给出了一个简单解释。共振分析与数值结果非常吻合且具有预测能力。我们扩展了先前开发的一种微扰方法,该方法主要基于庞加莱 - 林德施特德方案,以便考虑这些共振,并处理更一般的模型情况,包括截断的托达势。我们的结果对q呼吸子和自然包的超谐波共振给出了定性和半定量的描述。