Reinbolt Jeffrey A, Haftka Raphael T, Chmielewski Terese L, Fregly Benjamin J
Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, FL, USA.
Med Eng Phys. 2008 May;30(4):434-43. doi: 10.1016/j.medengphy.2007.05.005. Epub 2007 Jul 5.
Clinicians often use intuitive models based on clinical experience or regression models based on population studies to plan treatment of gait-related disorders. Because such models are constructed using data collected from previous patients, the predicted clinical outcome for a particular patient may not be reliable. We propose a new approach that uses computational models based on engineering mechanics to predict post-treatment outcome from pre-treatment movement data. The approach utilizes a four-phase optimization process built around a dynamic, patient-specific gait model. The first three phases calibrate the model's joint, inertial, and control parameters, respectively, where the control parameters are weights in an optimization cost function that tracks the patient's pre-treatment gait motion and loads. The last phase predicts the patient's post-treatment gait pattern by performing a tracking optimization with the calibrated model modified to simulate the selected treatment. We demonstrate the approach by simulating how two treatments for knee osteoarthritis (OA)--gait modification and high tibial osteotomy (HTO) surgery--alter the external knee adduction torque for a specific patient. By performing multiple tracking optimizations, we calibrated the model's parameter values to reproduce the patient's knee adduction torque curve for a toe out gait motion. When we performed a tracking optimization with the calibrated model using a modified footpath to simulate an increased stance width, the predicted reduction in both adduction torque peaks matched experimental results to within 4.8% error. When we performed a tracking optimization with the same model using modified leg geometry to simulate HTO surgery, the predicted reductions were consistent with published data. The approach requires further evaluation with a larger number of patients to determine its effectiveness for planning the treatment of gait-related disorders on a patient-specific basis.
临床医生通常使用基于临床经验的直观模型或基于人群研究的回归模型来规划与步态相关疾病的治疗方案。由于此类模型是使用从先前患者收集的数据构建的,因此特定患者的预测临床结果可能不可靠。我们提出了一种新方法,该方法使用基于工程力学的计算模型,根据治疗前的运动数据预测治疗后的结果。该方法利用围绕动态、特定患者的步态模型构建的四阶段优化过程。前三个阶段分别校准模型的关节、惯性和控制参数,其中控制参数是优化成本函数中的权重,该函数跟踪患者治疗前的步态运动和负荷。最后一个阶段通过对经过校准的模型进行跟踪优化来预测患者治疗后的步态模式,该模型经过修改以模拟所选治疗。我们通过模拟两种膝骨关节炎(OA)治疗方法——步态调整和高位胫骨截骨术(HTO)手术——如何改变特定患者的膝关节内收扭矩来演示该方法。通过执行多次跟踪优化,我们校准了模型的参数值,以重现患者在足外翻步态运动中的膝关节内收扭矩曲线。当我们使用修改后的步道对校准模型进行跟踪优化以模拟增加的站立宽度时,预测的两个内收扭矩峰值的降低与实验结果的误差在4.8%以内。当我们使用修改后的腿部几何形状对同一模型进行跟踪优化以模拟HTO手术时,预测的降低与已发表的数据一致。该方法需要对更多患者进行进一步评估,以确定其在基于特定患者规划与步态相关疾病治疗方面的有效性。