Suppr超能文献

基于下肢肌电图驱动的行走建模及肌肉骨骼几何结构的自动调整

Lower extremity EMG-driven modeling of walking with automated adjustment of musculoskeletal geometry.

作者信息

Meyer Andrew J, Patten Carolynn, Fregly Benjamin J

机构信息

Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, FL, United States of America.

Department of Physical Therapy, University of Florida, Gainesville, FL, United States of America.

出版信息

PLoS One. 2017 Jul 11;12(7):e0179698. doi: 10.1371/journal.pone.0179698. eCollection 2017.

Abstract

Neuromusculoskeletal disorders affecting walking ability are often difficult to manage, in part due to limited understanding of how a patient's lower extremity muscle excitations contribute to the patient's lower extremity joint moments. To assist in the study of these disorders, researchers have developed electromyography (EMG) driven neuromusculoskeletal models utilizing scaled generic musculoskeletal geometry. While these models can predict individual muscle contributions to lower extremity joint moments during walking, the accuracy of the predictions can be hindered by errors in the scaled geometry. This study presents a novel EMG-driven modeling method that automatically adjusts surrogate representations of the patient's musculoskeletal geometry to improve prediction of lower extremity joint moments during walking. In addition to commonly adjusted neuromusculoskeletal model parameters, the proposed method adjusts model parameters defining muscle-tendon lengths, velocities, and moment arms. We evaluated our EMG-driven modeling method using data collected from a high-functioning hemiparetic subject walking on an instrumented treadmill at speeds ranging from 0.4 to 0.8 m/s. EMG-driven model parameter values were calibrated to match inverse dynamic moments for five degrees of freedom in each leg while keeping musculoskeletal geometry close to that of an initial scaled musculoskeletal model. We found that our EMG-driven modeling method incorporating automated adjustment of musculoskeletal geometry predicted net joint moments during walking more accurately than did the same method without geometric adjustments. Geometric adjustments improved moment prediction errors by 25% on average and up to 52%, with the largest improvements occurring at the hip. Predicted adjustments to musculoskeletal geometry were comparable to errors reported in the literature between scaled generic geometric models and measurements made from imaging data. Our results demonstrate that with appropriate experimental data, joint moment predictions for walking generated by an EMG-driven model can be improved significantly when automated adjustment of musculoskeletal geometry is included in the model calibration process.

摘要

影响行走能力的神经肌肉骨骼疾病往往难以处理,部分原因是对患者下肢肌肉兴奋如何促成患者下肢关节力矩的了解有限。为了协助研究这些疾病,研究人员利用缩放的通用肌肉骨骼几何结构开发了肌电图(EMG)驱动的神经肌肉骨骼模型。虽然这些模型可以预测行走过程中单个肌肉对下肢关节力矩的贡献,但预测的准确性可能会受到缩放几何结构误差的阻碍。本研究提出了一种新颖的EMG驱动建模方法,该方法可自动调整患者肌肉骨骼几何结构的替代表示,以改善对行走过程中下肢关节力矩的预测。除了通常调整的神经肌肉骨骼模型参数外,该方法还调整定义肌肉肌腱长度、速度和力臂的模型参数。我们使用从一名功能良好的偏瘫患者在装有仪器的跑步机上以0.4至0.8 m/s的速度行走时收集的数据,对我们的EMG驱动建模方法进行了评估。EMG驱动模型参数值经过校准,以匹配每条腿五个自由度的逆动力学力矩,同时保持肌肉骨骼几何结构接近初始缩放肌肉骨骼模型。我们发现,与未进行几何调整的相同方法相比,我们纳入肌肉骨骼几何结构自动调整的EMG驱动建模方法在行走过程中预测净关节力矩更为准确。几何调整平均将力矩预测误差降低了25%,最高可达52%,最大的改进出现在髋关节处。预测的肌肉骨骼几何结构调整与文献中报道的缩放通用几何模型与成像数据测量之间的误差相当。我们的结果表明,有了适当的实验数据,当在模型校准过程中纳入肌肉骨骼几何结构的自动调整时,EMG驱动模型对行走产生的关节力矩预测可以显著改善。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2dce/5507406/9317cb163b8c/pone.0179698.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验