Harrop Todd C, Song Datong, Lippard Stephen J
Department of Chemistry, Massachusetts Institute of Technology, Room 18-498, Cambridge, MA 02139, USA.
J Inorg Biochem. 2007 Nov;101(11-12):1730-8. doi: 10.1016/j.jinorgbio.2007.05.006. Epub 2007 May 29.
The interaction of nitric oxide (NO) with iron-sulfur cluster proteins results in the formation of dinitrosyl iron complexes (DNICs) coordinated by cysteine residues from the peptide backbone or with low molecular weight sulfur-containing molecules like glutathione. Such DNICs are among the modes available in biology to store, transport, and deliver NO to its relevant targets. In order to elucidate the fundamental chemistry underlying the formation of DNICs and to characterize possible intermediates in the process, we have investigated the interaction of NO (g) and NO(+) with iron-sulfur complexes having the formula Fe(SR)(4), where R=(t)Bu, Ph, or benzyl, chosen to mimic sulfur-rich iron sites in biology. The reaction of NO (g) with Fe(S(t)Bu)(4) or Fe(SBz)(4) cleanly affords the mononitrosyl complexes (MNICs), Fe(S(t)Bu)(3)(NO) (1) and Fe(SBz)(3)(NO) (3), respectively, by ligand displacement. Mononitrosyl species of this kind were previously unknown. These complexes further react with NO (g) to generate the corresponding DNICs, Fe(SPh)(2)(NO)(2) (4) and Fe(SBz)(2)(NO)(2) (5), with concomitant reductive elimination of the coordinated thiolate donors. Reaction of Fe(SR)(4) complexes with NO(+) proceeds by a different pathway to yield the corresponding dinitrosyl S-bridged Roussin red ester complexes, [Fe(2)(mu-S(t)Bu)(2)(NO)(4)] (2), [Fe(2)(mu-SPh)(2)(NO)(4)] (7) and [Fe(2)(mu-SBz)(2)(NO)(4)] (8). The NO/NO(+) reactivity of an Fe(II) complex with a mixed nitrogen/sulfur coordination sphere was also investigated. The DNIC and red ester species, Fe(S-o-NH(2)C(6)H(4))(2)(NO)(2) (6) and [Fe(2)(mu-S-o-NH(2)C(6)H(4))(2)(NO)(4)] (9), were generated. The structures of 8 and 9 were verified by X-ray crystallography. The MNIC complex 1 can efficiently deliver NO to iron-porphyrin complexes like [Fe(TPP)Cl], a reaction that is aided by light. Removal of the coordinated NO ligand of 1 by photolysis and addition of elemental sulfur generates higher nuclearity Fe/S clusters.
一氧化氮(NO)与铁硫簇蛋白相互作用,会形成由肽主链上的半胱氨酸残基或与低分子量含硫分子(如谷胱甘肽)配位的二亚硝基铁配合物(DNICs)。这类DNICs是生物学中用于储存、运输并将NO递送至其相关靶点的多种方式之一。为了阐明DNICs形成背后的基础化学原理并表征该过程中可能的中间体,我们研究了NO(g)和NO(+)与化学式为Fe(SR)(4)的铁硫配合物的相互作用,其中R = (t)Bu、Ph或苄基,这些是为模拟生物学中富含硫的铁位点而选择的。NO(g)与Fe(S(t)Bu)(4)或Fe(SBz)(4)反应,通过配体取代反应分别顺利生成单亚硝基配合物(MNICs)Fe(S(t)Bu)(3)(NO)(1)和Fe(SBz)(3)(NO)(3)。此前这类单亚硝基物种并不为人所知。这些配合物进一步与NO(g)反应生成相应的DNICs,Fe(SPh)(2)(NO)(2)(4)和Fe(SBz)(2)(NO)(2)(5),同时伴随配位硫醇盐供体的还原消除。Fe(SR)(4)配合物与NO(+)的反应通过不同途径进行,生成相应的二亚硝基S桥连的鲁辛红酯配合物,[Fe(2)(μ-S(t)Bu)(2)(NO)(4)](2)、[Fe(2)(μ-SPh)(2)(NO)(4)](7)和[Fe(2)(μ-SBz)(2)(NO)(4)](8)。我们还研究了具有混合氮/硫配位球的Fe(II)配合物的NO/NO(+)反应活性。生成了DNIC和红酯物种,Fe(S-o-NH(2)C(6)H(4))(2)(NO)(2)(6)和[Fe(2)(μ-S-o-NH(2)C(6)H(4))(2)(NO)(4)](9)。通过X射线晶体学验证了8和9的结构。MNIC配合物1能够有效地将NO递送至铁卟啉配合物,如[Fe(TPP)Cl],光照有助于该反应。通过光解去除1中配位的NO配体并添加元素硫会生成更高核数的Fe/S簇。