Cheng Kin-Shing, Wang Wenping, Qin Hong, Wong Kwan-Yee, Yang Huaiping, Liu Yang
Department of Computer Science, The University of Hong Kong, Hong Kong.
IEEE Trans Vis Comput Graph. 2007 Sep-Oct;13(5):878-90. doi: 10.1109/tvcg.2007.1064.
We present a complete framework for computing a subdivision surface to approximate unorganized point sample data, which is a separable nonlinear least squares problem. We study the convergence and stability of three geometrically-motivated optimization schemes and reveal their intrinsic relations with standard methods for constrained nonlinear optimization. A commonly-used method in graphics, called point distance minimization, is shown to use a variant of the gradient descent step and thus has only linear convergence. The second method, called tangent distance minimization, which is well-known in computer vision, is shown to use the Gauss-Newton step, and thus demonstrates near quadratic convergence for zero residual problems but may not converge otherwise. Finally, we show that an optimization scheme called squared distance minimization, recently proposed by Pottmann et al., can be derived from the Newton method. Hence, with proper regularization, tangent distance minimization and squared distance minimization are more efficient than point distance minimization. We also investigate the effects of two step size control methods -- Levenberg-Marquardt regularization and the Armijo rule -- on the convergence stability and efficiency of the above optimization schemes.
我们提出了一个用于计算细分曲面以逼近无组织点采样数据的完整框架,这是一个可分离的非线性最小二乘问题。我们研究了三种基于几何的优化方案的收敛性和稳定性,并揭示了它们与约束非线性优化的标准方法之间的内在关系。图形学中一种常用的方法,称为点距离最小化,被证明使用了梯度下降步长的一种变体,因此只有线性收敛。第二种方法,称为切线距离最小化,在计算机视觉中是众所周知的,被证明使用高斯 - 牛顿步长,因此对于零残差问题表现出近二次收敛,但在其他情况下可能不收敛。最后,我们表明最近由波特曼等人提出的一种称为平方距离最小化的优化方案可以从牛顿法推导出来。因此,通过适当的正则化,切线距离最小化和平方距离最小化比点距离最小化更有效。我们还研究了两种步长控制方法——列文伯格 - 马夸特正则化和阿米尔乔规则——对上述优化方案的收敛稳定性和效率的影响。