Xu Stanley, Jones Richard H, Grunwald Gary K
Kaiser Permanente Colorado, P.O. Box 378066, Denver, Colorado 80237, USA.
Biom J. 2007 Jun;49(3):416-28. doi: 10.1002/bimj.200610317.
We propose a state space model for analyzing equally or unequally spaced longitudinal count data with serial correlation. With a log link function, the mean of the Poisson response variable is a nonlinear function of the fixed and random effects. The random effects are assumed to be generated from a Gaussian first order autoregression (AR(1)). In this case, the mean of the observations has a log normal distribution. We use a combination of linear and nonlinear methods to take advantage of the Gaussian process embedded in a nonlinear function. The state space model uses a modified Kalman filter recursion to estimate the mean and variance of the AR(1) random error given the previous observations. The marginal likelihood is approximated by numerically integrating out the AR(1) random error. Simulation studies with different sets of parameters show that the state space model performs well. The model is applied to Epileptic Seizure data and Primary Care Visits Data. Missing and unequally spaced observations are handled naturally with this model.
我们提出了一种状态空间模型,用于分析具有序列相关性的等间隔或不等间隔纵向计数数据。通过对数链接函数,泊松响应变量的均值是固定效应和随机效应的非线性函数。假设随机效应由高斯一阶自回归(AR(1))生成。在这种情况下,观测值的均值具有对数正态分布。我们使用线性和非线性方法的组合,以利用嵌入在非线性函数中的高斯过程。状态空间模型使用修正的卡尔曼滤波递归来估计给定先前观测值的AR(1)随机误差的均值和方差。通过对AR(1)随机误差进行数值积分来近似边际似然。不同参数集的模拟研究表明,状态空间模型表现良好。该模型应用于癫痫发作数据和初级保健就诊数据。此模型可以自然地处理缺失和不等间隔的观测值。