Suppr超能文献

具有双变量有序结果的纵向数据的潜变量模型。

Latent-variable models for longitudinal data with bivariate ordinal outcomes.

作者信息

Todem David, Kim KyungMann, Lesaffre Emmanuel

机构信息

Department of Epidemiology, Division of Biostatistics, Michigan State University, B601 West Fee Hall, East Lansing, MI 48823, USA.

出版信息

Stat Med. 2007 Feb 28;26(5):1034-54. doi: 10.1002/sim.2599.

Abstract

We use the concept of latent variables to derive the joint distribution of bivariate ordinal outcomes, and then extend the model to allow for longitudinal data. Specifically, we relate the observed ordinal outcomes using threshold values to a bivariate latent variable, which is then modelled as a linear mixed model. Random effects terms are used to tie all together repeated observations from the same subject. The cross-sectional association between the two outcomes is modelled through the correlation coefficient of the bivariate latent variable, conditional on random effects. Assuming conditional independence given random effects, the marginal likelihood, under the missing data at random assumption, is approximated using an adaptive Gaussian quadrature for numerical integration. The model provides fixed effects parameters that are subject-specific, but retain the population-averaged interpretation when properly scaled. This is particularly well suited for the situation in which population comparisons and individual level contrasts are of equal importance. Data from a psychiatric trial, the Fluvoxamine (an antidepressant drug) study, are used to illustrate the methodology.

摘要

我们使用潜变量的概念来推导二元有序结果的联合分布,然后扩展该模型以处理纵向数据。具体而言,我们通过阈值将观察到的有序结果与一个二元潜变量相关联,然后将该潜变量建模为线性混合模型。随机效应项用于将来自同一受试者的重复观测值联系在一起。两个结果之间的横断面关联通过二元潜变量的相关系数进行建模,并以随机效应为条件。假设给定随机效应时条件独立,在随机缺失数据假设下,边际似然通过自适应高斯求积法进行数值积分近似。该模型提供了特定于个体的固定效应参数,但在适当缩放时保留了总体平均解释。这特别适用于总体比较和个体水平对比同等重要的情况。来自一项精神病学试验(氟伏沙明(一种抗抑郁药物)研究)的数据用于说明该方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验