Krull Maren, Petrusma Mirjan, Makalowski Wojciech, Brosius Jürgen, Schmitz Jürgen
Institute of Experimental Pathology (ZMBE), University of Münster, Münster, Germany.
Genome Res. 2007 Aug;17(8):1139-45. doi: 10.1101/gr.6320607. Epub 2007 Jul 10.
Exonization of retroposed mobile elements, a process whereby new exons are generated following changes in non-protein-coding regions of a gene, is thought to have great potential for generating proteins with novel domains. Our previous analysis of primate-specific Alu-short interspersed elements (SINEs) showed, however, that during their 60 million years of evolution, SINE exonizations occurred in some primates, only to be lost again in some of the descendent lineages. This dynamic gain and loss makes it difficult to ascertain the contribution of exonization to genomic novelty. It was speculated that Alu-SINEs are too young to reveal persistent protein exaptation. In the present study we examined older mobile elements, mammalian-wide interspersed repeats (MIRs) that underwent active retroposition prior to the placental mammalian radiation approximately 130 million years ago, to determine their contribution to protein-coding sequences. Of 107 potential cases of MIR exonizations in human, an analysis of splice sites substantiates a mechanism that benefits from 3' splice site selection in MIR sequences. We retraced in detail the evolution of five MIR elements that exonized at different times during mammalian evolution. Four of these are expressed as alternatively spliced transcripts; three in species throughout the mammalian phylogenetic tree and one solely in primates. The fifth is the first experimentally verified, constitutively expressed retroposed SINE element in mammals. This pattern of highly conserved, alternatively and constitutively spliced MIR sequences evinces the potential of exonized transposed elements to evolve beyond the transient state found in Alu-SINEs and persist as important parts of functional proteins.
逆转座移动元件的外显子化是一个在基因的非蛋白质编码区域发生变化后产生新外显子的过程,人们认为它在产生具有新结构域的蛋白质方面具有巨大潜力。然而,我们之前对灵长类特异性Alu短散在元件(SINEs)的分析表明,在它们6000万年的进化过程中,SINE外显子化在一些灵长类动物中发生,但在一些后代谱系中又再次丢失。这种动态的得失使得难以确定外显子化对基因组新奇性的贡献。据推测,Alu-SINEs太年轻,无法揭示持续的蛋白质适应性。在本研究中,我们研究了更古老的移动元件,即大约1.3亿年前胎盘哺乳动物辐射之前经历活跃逆转座的全哺乳动物散布重复序列(MIRs),以确定它们对蛋白质编码序列的贡献。在人类中107个潜在的MIR外显子化案例中,对剪接位点的分析证实了一种受益于MIR序列中3'剪接位点选择的机制。我们详细追溯了在哺乳动物进化过程中不同时间外显子化的五个MIR元件的进化过程。其中四个以可变剪接转录本的形式表达;三个在整个哺乳动物系统发育树的物种中表达,一个仅在灵长类动物中表达。第五个是哺乳动物中第一个经过实验验证的、组成性表达的逆转座SINE元件。这种高度保守的、可变和组成性剪接的MIR序列模式表明,外显子化的转座元件有可能超越在Alu-SINEs中发现的瞬态状态而进化,并作为功能蛋白质的重要组成部分持续存在。