Martínez-Júlvez Marta, Cremades Nunilo, Bueno Marta, Pérez-Dorado Inmaculada, Maya Celia, Cuesta-López Santiago, Prada Diego, Falo Fernando, Hermoso Juan A, Sancho Javier
Biocomputation and Complex Systems Physics Institute (BiFi), Universidad de Zaragoza, Unidad Asociada al IQFR-CSIC, Zaragoza, Spain.
Proteins. 2007 Nov 15;69(3):581-94. doi: 10.1002/prot.21410.
Flavodoxins, noncovalent complexes between apoflavodoxins and flavin mononucleotide (FMN), are useful models to investigate the mechanism of protein/flavin recognition. In this respect, the only available crystal structure of an apoflavodoxin (that from Anabaena) showed a closed isoalloxazine pocket and the presence of a bound phosphate ion, which posed many questions on the recognition mechanism and on the potential physiological role exerted by phosphate ions. To address these issues we report here the X-ray structure of the apoflavodoxin from the pathogen Helicobacter pylori. The protein naturally lacks one of the conserved aromatic residues that close the isoalloxazine pocket in Anabaena, and the structure has been determined in a medium lacking phosphate. In spite of these significant differences, the isoallozaxine pocket in H. pylori apoflavodoxin appears also closed and a chloride ion is bound at a native-like FMN phosphate site. It seems thus that it is a general characteristic of apoflavodoxins to display closed, non-native, isoalloxazine binding sites together with native-like, rather promiscuous, phosphate binding sites that can bear other available small anions present in solution. In this respect, both binding energy hot spots of the apoflavodoxin/FMN complex are initially unavailable to FMN binding and the specific spot for FMN recognition may depend on the dynamics of the two candidate regions. Molecular dynamics simulations show that the isoalloxazine binding loops are intrinsically flexible at physiological temperatures, thus facilitating the intercalation of the cofactor, and that their mobility is modulated by the anion bound at the phosphate site.
黄素氧还蛋白是脱辅基黄素氧还蛋白与黄素单核苷酸(FMN)之间的非共价复合物,是研究蛋白质/黄素识别机制的有用模型。在这方面,唯一可用的脱辅基黄素氧还蛋白晶体结构(来自鱼腥藻)显示出一个封闭的异咯嗪口袋以及一个结合的磷酸根离子的存在,这对识别机制以及磷酸根离子发挥的潜在生理作用提出了许多问题。为了解决这些问题,我们在此报告了病原体幽门螺杆菌脱辅基黄素氧还蛋白的X射线结构。该蛋白质天然缺少鱼腥藻中封闭异咯嗪口袋的保守芳香族残基之一,并且该结构是在缺乏磷酸盐的介质中确定的。尽管存在这些显著差异,但幽门螺杆菌脱辅基黄素氧还蛋白中的异咯嗪口袋似乎也是封闭的,并且一个氯离子结合在类似天然的FMN磷酸位点上。因此,似乎脱辅基黄素氧还蛋白的一个普遍特征是显示封闭的、非天然的异咯嗪结合位点以及类似天然的、相当混杂的磷酸根结合位点,这些位点可以结合溶液中存在的其他可用小阴离子。在这方面,脱辅基黄素氧还蛋白/FMN复合物的两个结合能热点最初对于FMN结合是不可用的,并且FMN识别的特定位点可能取决于两个候选区域的动力学。分子动力学模拟表明,异咯嗪结合环在生理温度下本质上是灵活的,从而促进了辅因子的插入,并且它们的流动性受到结合在磷酸位点上的阴离子的调节。