Campos L A, Sancho J
Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias & Biocomputation and Complex Systems Physics Institute, Universidad de Zaragoza, Zaragoza, Spain.
Proteins. 2006 May 15;63(3):581-94. doi: 10.1002/prot.20855.
Flavodoxins are useful models to investigate protein/cofactor interactions. The binding energy of the apoflavodoxin-FMN complex is high and therefore the holoflavodoxin is expected to be more stable than the apoprotein. This expectation has been challenged by reports on the stability of Desulfovibrio desulfuricans flavodoxin indicating that FMN binds to the unfolded polypeptide with similar affinity as to the native state, thus causing no net effect on protein stability. In previous work, we have analyzed in detail the stability of the apoflavodoxin from Anabaena PCC 7119 and the energetics of its functional complex with FMN. Here, we use the Anabaena holoprotein to directly investigate the contribution of the bound cofactor to protein stability through a detailed analysis of the chemical and thermal denaturation equilibria. Our data clearly shows that FMN binding largely stabilizes the protein towards both chemical and thermal denaturation, and that the stabilization observed at 25 degrees C in low ionic strength conditions is precisely the one expected if full release of the cofactor takes place upon flavodoxin unfolding. On the other hand, the binding of FMN to the native polypeptide is shown to simplify the thermal unfolding so that, while apoflavodoxin follows a three-state mechanism, the holoprotein unfolds in a two-state fashion. Comparison of the X-ray structure of native apoflavodoxin with the phi-structure of the thermal intermediate indicates that the increase in cooperativity driven by the cofactor originates in its preferential binding to the native state, which is a consequence of the disorganization in the intermediate of the FMN binding loops and of an adjacent longer loop.
黄素氧还蛋白是研究蛋白质/辅因子相互作用的有用模型。脱辅基黄素氧还蛋白-FMN复合物的结合能很高,因此预计全黄素氧还蛋白比脱辅基蛋白更稳定。关于脱硫脱硫弧菌黄素氧还蛋白稳定性的报道对这一预期提出了挑战,这些报道表明FMN与未折叠的多肽结合的亲和力与与天然状态相似,因此对蛋白质稳定性没有净影响。在之前的工作中,我们详细分析了鱼腥藻PCC 7119脱辅基黄素氧还蛋白的稳定性及其与FMN功能复合物的能量学。在这里,我们使用鱼腥藻全蛋白,通过对化学和热变性平衡的详细分析,直接研究结合的辅因子对蛋白质稳定性的贡献。我们的数据清楚地表明,FMN结合在很大程度上使蛋白质对化学和热变性都更加稳定,并且在25摄氏度低离子强度条件下观察到的稳定性正是如果黄素氧还蛋白展开时辅因子完全释放所预期的稳定性。另一方面,FMN与天然多肽的结合被证明简化了热展开过程,因此,虽然脱辅基黄素氧还蛋白遵循三态机制,但全蛋白以两态方式展开。天然脱辅基黄素氧还蛋白的X射线结构与热中间体的φ结构的比较表明,辅因子驱动的协同性增加源于其对天然状态的优先结合,这是FMN结合环和相邻较长环的中间体无序化的结果。