Suppr超能文献

关于具有壶腹或黏液腺电感受器器官的水生脊椎动物的电检测阈值

On the electrodetection threshold of aquatic vertebrates with ampullary or mucous gland electroreceptor organs.

作者信息

Peters Rob C, Eeuwes Lonneke B M, Bretschneider Franklin

机构信息

Functional Neurobiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.

出版信息

Biol Rev Camb Philos Soc. 2007 Aug;82(3):361-73. doi: 10.1111/j.1469-185X.2007.00015.x.

Abstract

Reinterpretation of research on the electric sense in aquatic organisms with ampullary organs results in the following conclusions. The detection limit of limnic vertebrates with ampullary organs is 1 microV cm(-1), and of marine fish is 20 nV cm(-1). Angular movements are essential for stimulation of the ampullary system in uniform d.c. fields. Angular movements in the geomagnetic field also generate induction voltages, which exceed the 20 nV cm(-1) limit in marine fish. As a result, marine electrosensitive fish are sensitive to motion in the geomagnetic field, whereas limnic fish are not. Angular swimming movements generate a.c. stimuli, which act like the noise in a stochastic resonance system, and result in a detection threshold in marine organisms as low as 1 nV cm(-1). Fish in the benthic space are exposed to stronger electric stimuli than fish in the pelagic space. Benthic fish scan the orientation plane for the maximum potential difference with their raster of electroreceptor organs, in order to locate bioelectric prey. This behaviour explains why the detection threshold does not depend on fish size. Pelagic marine fish are mainly exposed to electric fields caused by movements in the geomagnetic field. The straight orientation courses found in certain shark species might indicate that the electric sense functions as a simple bisensor system. Symmetrical stimulation of the sensory raster would provide an easy way to keep a straight course with respect to a far-field stimulus. The same neural mechanism would be effective in the location of a bioelectric prey generating a near-field stimulus. The response criteria in conditioning experiments and in experiments with spontaneous reactions are discussed.

摘要

对具有壶腹器官的水生生物电感应研究的重新解读得出以下结论。具有壶腹器官的淡水脊椎动物的检测极限为1微伏/厘米(-1),海洋鱼类为20纳伏/厘米(-1)。在均匀直流电场中,角向运动对于刺激壶腹系统至关重要。在地磁场中的角向运动也会产生感应电压,其超过了海洋鱼类20纳伏/厘米(-1)的极限。因此,海洋电敏感鱼类对地磁场中的运动敏感,而淡水鱼类则不敏感。角向游泳运动会产生交流刺激,其作用类似于随机共振系统中的噪声,并导致海洋生物的检测阈值低至1纳伏/厘米(-1)。底栖空间中的鱼类比浮游空间中的鱼类受到更强的电刺激。底栖鱼类用其电感受器器官的光栅扫描取向平面以寻找最大电位差,以便定位生物电猎物。这种行为解释了为什么检测阈值不取决于鱼的大小。浮游海洋鱼类主要受到地磁场中运动引起的电场影响。在某些鲨鱼物种中发现的直线取向路线可能表明电感应起着简单的双传感器系统的作用。对感觉光栅的对称刺激将提供一种简单的方法来相对于远场刺激保持直线路线。相同的神经机制在定位产生近场刺激的生物电猎物时也将有效。文中还讨论了条件实验和自发反应实验中的反应标准。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验