Suppr超能文献

Theoretical analysis of tablet hardness prediction using chemoinformetric near-infrared spectroscopy.

作者信息

Tanabe Hideaki, Otsuka Kuniko, Otsuka Makoto

机构信息

Kobe Pharmaceutical University, Higashinada, Kobe, Japan.

出版信息

Anal Sci. 2007 Jul;23(7):857-62. doi: 10.2116/analsci.23.857.

Abstract

In order to clarify the theoretical basis of the variability in the measurement of tablet hardness by compression pressure, NIR spectroscopic methods were used to predict tablet hardness of the formulations. Tablets (200 mg, 8 mm in diameter) consisting of berberine chloride, lactose, and potato starch were formed at various compression pressures (59, 78, 98, 127, 195 MPa). The hardness and the distribution of micropores were measured. The reflectance NIR spectra of various compressed tablets were used as a calibration set to establish a calibration model to predict tablet hardness by principal component regression (PCR) analysis. The distribution of micropores was shifted to a smaller pore size with increasing compression pressure. The total pore volume of tablets decreased as the compression pressure increased. The hardness increased as the compression pressure increased. The hardness could be predicted using a calibration model consisting of 7 principal components (PCs) obtained by PCR. The relationship between the predicted and the actual hardness values exhibited a straight line, an R(2) of 0.925. In order to understand the theoretical analysis (scientific background) of calibration models used to evaluate tablet hardness, the standard error of cross validation (SEV) values, the loading vectors of each PC and the regression vector were investigated. The result obtained with the calibration models for hardness suggested that the regression vector might involve physical and chemical factors. In contrast, the porosity could be predicted using a calibration model composed of 2 PCs. The relationship between the predicted and the actual total pore volume showed a straight line with R(2) = 0.801. The regression vector of the total pore volume might be due to physical factors.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验