Suppr超能文献

过程分析技术:拉曼光谱和近红外光谱数据的化学计量学分析用于预测缓释骨架片的物理性质

Process analytical technology: chemometric analysis of Raman and near infra-red spectroscopic data for predicting physical properties of extended release matrix tablets.

作者信息

Shah Rakhi B, Tawakkul Mobin A, Khan Mansoor A

机构信息

Division of Product Quality Research, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA.

出版信息

J Pharm Sci. 2007 May;96(5):1356-65. doi: 10.1002/jps.20931.

Abstract

The purpose of this work was to develop a correlation between pharmaceutical properties such as hardness, porosity, and content with prediction models employed using Raman and near infra-red (NIR) spectroscopic methods. Metoprolol tartrate tablets were prepared by direct compression and wet granulation methods. NIR spectroscopy and chemical imaging, and Raman spectra were collected, and hardness, porosity, and dissolution were measured. The NIR PLS model showed a validated correlation coefficient of >0.90 for the predicted versus measured porosity, hardness, and amount of drug with raw and second derivative NIR spectra. Raman spectra correlated porosity of the tablets using raw data for directly compressed tablets and wet granulated tablets (r(2) > 0.90). A very close root-mean square error of calibration (RMSEC) and root-mean square error of prediction (RMSEP) values were found in all the cases indicating validity of the calibration models. Raman spectroscopy was used for the first time to predict physical quality attribute such as porosity successfully. Chemical imaging utilizing NIR detector also demonstrated to show physical changes due to compression differences. In conclusion, sensor technologies can be potentially used to predict physical parameters of the matrix tablets.

摘要

这项工作的目的是建立诸如硬度、孔隙率和含量等药物性质与使用拉曼光谱和近红外(NIR)光谱方法的预测模型之间的相关性。酒石酸美托洛尔片通过直接压片法和湿法制粒法制备。收集了近红外光谱和化学成像以及拉曼光谱,并测量了硬度、孔隙率和溶出度。近红外偏最小二乘(PLS)模型显示,对于预测的和测量的孔隙率、硬度以及原料药和二阶导数近红外光谱的药物含量,验证相关系数>0.90。拉曼光谱使用直接压片和湿法制粒片的原始数据关联了片剂的孔隙率(r²>0.90)。在所有情况下均发现校准均方根误差(RMSEC)和预测均方根误差(RMSEP)值非常接近,表明校准模型有效。拉曼光谱首次成功用于预测诸如孔隙率等物理质量属性。利用近红外探测器的化学成像也证明显示出由于压缩差异导致的物理变化。总之,传感技术可潜在地用于预测基质片剂的物理参数。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验