Lee Chi-Ying, Harbers Gregory M, Grainger David W, Gamble Lara J, Castner David G
National ESCA and Surface Analysis Center for Biomedical Problems, Department of Bioengineering, University of Washington, Seattle, WA 98195-1750, USA.
J Am Chem Soc. 2007 Aug 1;129(30):9429-38. doi: 10.1021/ja071879m. Epub 2007 Jul 11.
Performance improvements in DNA-modified surfaces required for microarray and biosensor applications rely on improved capabilities to accurately characterize the chemistry and structure of immobilized DNA molecules on micropatterned surfaces. Recent innovations in imaging X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) now permit more detailed studies of micropatterned surfaces. We have exploited the complementary information provided by imaging XPS and imaging TOF-SIMS to detail the chemical composition, spatial distribution, and hybridization efficiency of amine-terminated single-stranded DNA (ssDNA) bound to commercial polyacrylamide-based, amine-reactive microarray slides, immobilized in both macrospot and microarray diagnostic formats. Combinations of XPS imaging and small spot analysis were used to identify micropatterned DNA spots within printed DNA arrays on slide surfaces and quantify DNA elements within individual microarray spots for determination of probe immobilization and hybridization efficiencies. This represents the first report of imaging XPS of DNA immobilization and hybridization efficiencies for arrays fabricated on commercial microarray slides. Imaging TOF-SIMS provided distinct analytical data on the lateral distribution of DNA within single array microspots before and after target hybridization. Principal component analysis (PCA) applied to TOF-SIMS imaging datasets demonstrated that the combination of these two techniques provides information not readily observable in TOF-SIMS images alone, particularly in identifying species associated with array spot nonuniformities (e.g., "halo" or "donut" effects often observed in fluorescence images). Chemically specific spot images were compared to conventional fluorescence scanned images in microarrays to provide new information on spot-to-spot DNA variations that affect current diagnostic reliability, assay variance, and sensitivity.
微阵列和生物传感器应用所需的DNA修饰表面的性能提升依赖于更强大的能力,以准确表征微图案表面上固定化DNA分子的化学性质和结构。成像X射线光电子能谱(XPS)和飞行时间二次离子质谱(TOF-SIMS)的最新创新现在允许对微图案表面进行更详细的研究。我们利用成像XPS和成像TOF-SIMS提供的互补信息,详细研究了与基于商业聚丙烯酰胺的胺反应性微阵列载玻片结合的胺基末端单链DNA(ssDNA)的化学成分、空间分布和杂交效率,这些载玻片以宏观斑点和微阵列诊断形式固定。XPS成像和小斑点分析相结合,用于识别载玻片表面印刷DNA阵列中的微图案化DNA斑点,并量化单个微阵列斑点内的DNA元素,以确定探针固定化和杂交效率。这是关于商业微阵列载玻片上制造的阵列的DNA固定化和杂交效率的成像XPS的首次报告。成像TOF-SIMS提供了关于靶标杂交前后单个阵列微斑点内DNA横向分布的独特分析数据。应用于TOF-SIMS成像数据集的主成分分析(PCA)表明,这两种技术的结合提供了仅在TOF-SIMS图像中不易观察到的信息,特别是在识别与阵列斑点不均匀性相关的物种时(例如,荧光图像中经常观察到的“光晕”或“甜甜圈”效应)。将化学特异性斑点图像与微阵列中的传统荧光扫描图像进行比较,以提供关于影响当前诊断可靠性、测定方差和灵敏度的斑点间DNA变化的新信息。