Suppr超能文献

具有基于人工智能的鉴别性能的多重DNA功能化石墨烯传感器,用于分析化学蒸汽成分。

Multiplexed DNA-functionalized graphene sensor with artificial intelligence-based discrimination performance for analyzing chemical vapor compositions.

作者信息

Hwang Yun Ji, Yu Heejin, Lee Gilho, Shackery Iman, Seong Jin, Jung Youngmo, Sung Seung-Hyun, Choi Jongeun, Jun Seong Chan

机构信息

School of Mechanical Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea.

出版信息

Microsyst Nanoeng. 2023 Mar 20;9:28. doi: 10.1038/s41378-023-00499-y. eCollection 2023.

Abstract

This study presents a new technology that can detect and discriminate individual chemical vapors to determine the chemical vapor composition of mixed chemical composition in situ based on a multiplexed DNA-functionalized graphene (MDFG) nanoelectrode without the need to condense the original vapor or target dilution. To the best of our knowledge, our artificial intelligence (AI)-operated arrayed electrodes were capable of identifying the compositions of mixed chemical gases with a mixed ratio in the early stage. This innovative technology comprised an optimized combination of nanodeposited arrayed electrodes and artificial intelligence techniques with advanced sensing capabilities that could operate within biological limits, resulting in the verification of mixed vapor chemical components. Highly selective sensors that are tolerant to high humidity levels provide a target for "breath chemovapor fingerprinting" for the early diagnosis of diseases. The feature selection analysis achieved recognition rates of 99% and above under low-humidity conditions and 98% and above under humid conditions for mixed chemical compositions. The 1D convolutional neural network analysis performed better, discriminating the compositional state of chemical vapor under low- and high-humidity conditions almost perfectly. This study provides a basis for the use of a multiplexed DNA-functionalized graphene gas sensor array and artificial intelligence-based discrimination of chemical vapor compositions in breath analysis applications.

摘要

本研究提出了一种新技术,该技术能够基于多重DNA功能化石墨烯(MDFG)纳米电极原位检测和区分单个化学蒸汽,以确定混合化学成分的化学蒸汽组成,而无需冷凝原始蒸汽或进行目标稀释。据我们所知,我们的人工智能(AI)操作的阵列电极能够在早期识别混合比例的混合化学气体的成分。这项创新技术包括纳米沉积阵列电极和人工智能技术的优化组合,具有先进的传感能力,能够在生物极限范围内运行,从而实现对混合蒸汽化学成分的验证。对高湿度水平具有耐受性的高选择性传感器为疾病的早期诊断提供了“呼吸化学蒸汽指纹识别”的目标。对于混合化学成分,特征选择分析在低湿度条件下的识别率达到99%及以上,在潮湿条件下达到98%及以上。一维卷积神经网络分析表现更好,几乎能完美地区分低湿度和高湿度条件下化学蒸汽的组成状态。本研究为在呼吸分析应用中使用多重DNA功能化石墨烯气体传感器阵列和基于人工智能的化学蒸汽成分鉴别提供了依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0686/10025282/3e0422fedcb6/41378_2023_499_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验