Suppr超能文献

尖嘴鱼极快的猎物捕捉动作是由弹性反冲提供动力的。

Extremely fast prey capture in pipefish is powered by elastic recoil.

作者信息

Van Wassenbergh Sam, Strother James A, Flammang Brooke E, Ferry-Graham Lara A, Aerts Peter

机构信息

Department of Biologie, Laboratory for Functional Morphology, University of Antwerpen, Universiteitsplein 1, 2610 Antwerpen, Belgium.

出版信息

J R Soc Interface. 2008 Mar 6;5(20):285-96. doi: 10.1098/rsif.2007.1124.

Abstract

The exceptionally high speed at which syngnathid fishes are able to rotate their snout towards prey and capture it by suction is potentially caused by a catapult mechanism in which the energy previously stored in deformed elastic elements is suddenly released. According to this hypothesis, tension is built up in tendons of the post-cranial muscles before prey capture is initiated. Next, an abrupt elastic recoil generates high-speed dorsal rotation of the head and snout, rapidly bringing the mouth close to the prey, thus enabling the pipefish to be close enough to engulf the prey by suction. However, no experimental evidence exists for such a mechanism of mechanical power amplification during feeding in these fishes. To test this hypothesis, inverse dynamical modelling based upon kinematic data from high-speed videos of prey capture in bay pipefish Syngnathus leptorhynchus, as well as electromyography of the muscle responsible for head rotation (the epaxial muscle) was performed. The remarkably high instantaneous muscle-mass-specific power requirement calculated for the initial phase of head rotation (up to 5795 W kg(-1)), as well as the early onset times of epaxial muscle activity (often observed more than 300 ms before the first externally discernible prey capture motion), support the elastic power enhancement hypothesis.

摘要

海龙科鱼类能够以极高的速度将吻部转向猎物并通过吸力捕获猎物,这可能是由一种弹射机制引起的,即先前储存在变形弹性元件中的能量突然释放。根据这一假设,在开始捕获猎物之前,颅后肌肉的肌腱中会产生张力。接下来,突然的弹性反冲会导致头部和吻部高速向后旋转,迅速将嘴靠近猎物,从而使管口鱼能够足够接近猎物以通过吸力将其吞食。然而,在这些鱼类进食过程中,没有实验证据支持这种机械功率放大机制。为了验证这一假设,基于海湾管口鱼(Syngnathus leptorhynchus)捕获猎物的高速视频的运动学数据以及负责头部旋转的肌肉(轴上肌)的肌电图,进行了逆动力学建模。为头部旋转初始阶段计算出的极高的瞬时肌肉质量比功率需求(高达5795 W kg⁻¹),以及轴上肌活动的早期起始时间(通常在第一次外部可辨别的猎物捕获动作之前300多毫秒就观察到),支持了弹性功率增强假说。

相似文献

1
Extremely fast prey capture in pipefish is powered by elastic recoil.
J R Soc Interface. 2008 Mar 6;5(20):285-96. doi: 10.1098/rsif.2007.1124.
2
Prey capture kinematics and four-bar linkages in the bay pipefish, Syngnathus leptorhynchus.
Zoology (Jena). 2009;112(2):86-96. doi: 10.1016/j.zool.2008.04.003. Epub 2008 Sep 7.
4
Extremely fast feeding strikes are powered by elastic recoil in a seahorse relative, the snipefish, .
Proc Biol Sci. 2018 Jul 4;285(1882):20181078. doi: 10.1098/rspb.2018.1078.
5
New insights into muscle function during pivot feeding in seahorses.
PLoS One. 2014 Oct 1;9(10):e109068. doi: 10.1371/journal.pone.0109068. eCollection 2014.
6
Suction is kid's play: extremely fast suction in newborn seahorses.
Biol Lett. 2009 Apr 23;5(2):200-3. doi: 10.1098/rsbl.2008.0765. Epub 2009 Feb 20.
8
Why the long face? A comparative study of feeding kinematics of two pipefishes with different snout lengths.
J Fish Biol. 2011 Jun;78(6):1786-98. doi: 10.1111/j.1095-8649.2011.02991.x. Epub 2011 May 5.
10
Suction power output and the inertial cost of rotating the neurocranium to generate suction in fish.
J Theor Biol. 2015 May 7;372:159-67. doi: 10.1016/j.jtbi.2015.03.001. Epub 2015 Mar 10.

引用本文的文献

2
Do salamanders chew? An X-ray reconstruction of moving morphology analysis of ambystomatid intraoral feeding behaviours.
Philos Trans R Soc Lond B Biol Sci. 2023 Dec 4;378(1891):20220540. doi: 10.1098/rstb.2022.0540. Epub 2023 Oct 16.
3
A power amplification dyad in seahorses.
Proc Biol Sci. 2023 Apr 12;290(1996):20230520. doi: 10.1098/rspb.2023.0520.
6
Fishes can use axial muscles as anchors or motors for powerful suction feeding.
J Exp Biol. 2020 Sep 18;223(Pt 18):jeb225649. doi: 10.1242/jeb.225649.
7
Elastic recoil action amplifies jaw closing speed in an aquatic feeding salamander.
Proc Biol Sci. 2020 May 27;287(1927):20200428. doi: 10.1098/rspb.2020.0428. Epub 2020 May 20.
8
Evolution of a high-performance and functionally robust musculoskeletal system in salamanders.
Proc Natl Acad Sci U S A. 2020 May 12;117(19):10445-10454. doi: 10.1073/pnas.1921807117. Epub 2020 Apr 27.
9
Loading Rate Has Little Influence on Tendon Fascicle Mechanics.
Front Physiol. 2020 Mar 24;11:255. doi: 10.3389/fphys.2020.00255. eCollection 2020.

本文引用的文献

1
Extremely high-power tongue projection in plethodontid salamanders.
J Exp Biol. 2007 Feb;210(Pt 4):655-67. doi: 10.1242/jeb.02664.
3
Storage and recovery of elastic potential energy powers ballistic prey capture in toads.
J Exp Biol. 2006 Jul;209(Pt 13):2535-53. doi: 10.1242/jeb.02276.
4
Living in a physical world III. Getting up to speed.
J Biosci. 2005 Jun;30(3):303-12. doi: 10.1007/BF02703667.
5
Muscle directly meets the vast power demands in agile lizards.
Proc Biol Sci. 2005 Mar 22;272(1563):581-4. doi: 10.1098/rspb.2004.2982.
6
Evidence for an elastic projection mechanism in the chameleon tongue.
Proc Biol Sci. 2004 Apr 7;271(1540):761-70. doi: 10.1098/rspb.2003.2637.
7
Maximum strength-power-performance relationships in collegiate throwers.
J Strength Cond Res. 2003 Nov;17(4):739-45. doi: 10.1519/1533-4287(2003)017<0739:msrict>2.0.co;2.
8
Analysis of a swimmer's hand and arm in steady flow conditions using computational fluid dynamics.
J Biomech. 2002 May;35(5):713-7. doi: 10.1016/s0021-9290(01)00246-9.
9
The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight.
J Exp Biol. 2002 Apr;205(Pt 8):1087-96. doi: 10.1242/jeb.205.8.1087.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验